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Abstract Line search method and trust region method are two important
classes of techniques for solving optimization problems and have their advantages
respectively. In this paper we use the Armijo line search rule in a more accurate
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equivalent to an approximation of a trust region method then has both advantages
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1 Introduction

Consider the unconstrained minimization problem

min f(x), x ∈ Rn, (1)

where Rn denotes an n-dimensional Euclidean space and f : Rn → R1 is a contin-
uously differentiable function.

Traditional iterative methods for solving (1) are either line search method or
trust region method. Line search method is based on searching a new iterative
point along a descent direction at each iteration and trust region method is based
on finding a new iterative point within a ball centered at the current iterate.
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Generally, line search method takes the form

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (2)

where dk is a descent direction of f(x) at xk and αk is a step size. For convenience,
we denote∇f(xk) by gk, f(xk) by fk, ∇2f(xk) by Gk and f(x∗) by f∗, respectively.
If Gk is available and inverse, then dk = G−1

k gk leads to the Newton method while
dk = −gk results in the steepest descent method (e.g.[2, 3]). The search direction
dk is generally required to satisfy

gT
k dk < 0, (3)

which guarantees that dk is a descent direction of f(x) at xk(e.g.[3, 9, 10]). In
order to guarantee the global convergence, we sometimes require dk to satisfy the
sufficient descent condition

gT
k dk ≤ −c‖gk‖

2, (4)

where c > 0 is a constant. Instead of (4), the angle property is often used in proving
the global convergence of related line search methods, that is

cos < −gk, dk >= −
gT

k dk

‖gk‖ · ‖dk‖
≥ τ, (5)

where 1 ≥ τ > 0.
Once the descent direction dk is determined we should seek a step size along

the descent direction and complete one iterate.
There are many approaches to find an available step size. It is well known

that the exact line search is time-consuming, then inexact line search rules, such
as Armijo rule([1]), Goldstein rule and Wolfe rule, etc., see [3, 4, 5], are generally
used. Convergence analysis on line search methods can be seen in the literatures
(e.g.[4, 5, 7, 8]). Among them the Armijo rule is most useful and easy to implement
in practical computation.

Armijo Rule. Let s > 0 be a constant, ρ ∈ (0, 1) and µ ∈ (0, 1). Take αk to
be the largest α in {s, sρ, sρ2, ..., } such that

fk − f(xk + αdk) ≥ −αµgT
k dk.

On the other hand, unlike the line search method, the trust region requires to
solve the following subproblem at each iteration

min mk(p) = fk + gT
k p +

1

2
pT Bkp, s.t. ‖p‖ ≤ ∆k, (6)

with Bk being an approximation to Gk and ∆k being a trust region radius and
obtain a solution pk. By observing the value

rk =
fk − f(xk + pk)

mk(0)−mk(pk)
, (7)

From Line Search Method to Trust Region Method 157



we can assert whether or not the new point xk = xk + pk is accepted. Trust region
method avoids line search but needs to solve a subproblem (see [6, 9, 12]). Given
µ ∈ [0, 1

4 ), one has the accepted strategy

xk+1 =

{

xk, if rk ≥ µ;
xk, otherwise.

(8)

In this paper we extend the Armijo line search rule to a general form and
propose a new line search method for unconstrained optimization problems. The
global convergence and convergence rate of the new method are analyzed under
mild conditions. Furthermore, the new Armijo-type line search rule enables us to
reveal the relationship between line search method and trust region method.

The rest of this paper is organized as follows. In the next section we introduce
a novel usage of Armijo rule and develop a line search method. In Sections 3 and 4
we analyze its global convergence and convergence rate respectively. In Section 5
we reveal some relationships between the new line search method and trust region
method. Conclusion remarks are given in Section 6.

2 A Novel Usage of Armijo Rule

We first assume that
(H1). The objective function f(x) is continuously differentiable and has a lower

bound on Rn.
(H2). The gradient g(x) of f(x) is uniformly continuous on an open convex set

B that contains the level set L0 = {x ∈ Rn|f(x) ≤ f(x0)}, where x0 is given.
(H2)′. The gradient g(x) of f(x) is Lipschitz continuous on an open convex set

B that contains the level set L0, i.e., there exists M ′ such that

‖g(x)− g(y)‖ ≤ M ′‖x− y‖, ∀x, y ∈ B.

It is apparent that (H2)′ implies (H2).

Now we define a new usage of the Armijo rule or simply call it new Armijo
search.

New Armijo Search. Given µ ∈ (0, 1
2 ) and ρ ∈ (0, 1), Bk is an approximation

to Gk = ∇2f(xk) and B̂k is defined by the following procedure: take i to be the

smallest integer such that dT
k Bkdk + i‖dk‖

2 > 0. Set sk = −
gT

k
dk

dT

k
B̂kdk

and αk is the

largest α in {sk, skρ, skρ2, ..., } such that

fk − f(xk + αdk) ≥ −αµ[gT
k dk +

1

2
αdT

k Bkdk].

Algorithm (A).
Step 0. Choose x0 ∈ Rn and set k := 0.
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Step 1. If ‖gk‖ = 0 then stop; else go to Step 2;
Step 2. Set xk+1 = xk + αkdk where dk is a descent direction of f(x) at xk and

αk is selected by the new Armijo search;
Step 3. Set k := k + 1 and go to Step 1.

Lemma 2.1. If (H1) holds and gT
k dk < 0, then the new Armijo search is

well-defined.
Proof. By (H1) we have

lim
α→0+

[
f(xk + αdk)− fk −

1
2µα2dT

k Bkdk

α
] = gT

k dk < µgT
k dk.

Therefore, there exists an αk > 0 such that

f(xk + αdk)− fk −
1
2µα2dT

k Bkdk

α
≤ µgT

k dk, ∀α ∈ [0, αk],

which implies that the new Armijo search is well-defined.
2

3 Global convergence

Theorem 3.1. If (H1) and (H2) hold, dk satisfies (3) and αk is defined by
the new Armijo search. Algorithm (A) generates an infinite sequence {xk} with a
bounded sequence {Bk}, that is, there is a β such that ‖Bk‖ ≤ β, ∀k. Then

lim
k→∞

(−
gT

k dk

‖dk‖
) = 0. (9)

Proof. For contrary, if there exist an infinite subset K ⊆ {0, 1, 2, 3, ...} and an
ǫ > 0 such that

−
gT

k dk

‖dk‖
≥ ǫ, k ∈ K, (10)

then
−gT

k dk ≥ ǫ‖dk‖, ∀k ∈ K. (11)

By the new Armijo search and (11), in the case of dT
k Bkdk ≤ 0 (k ∈ K), we have

fk − fk+1 ≥ −αkµ[gT
k dk +

1

2
αkdT

k Bkdk] ≥ −αkµgT
k dk ≥ αkµǫ‖dk‖;

and in the case of dT
k Bkdk > 0 (k ∈ K), since αk ≤ sk = −

gT

k
dk

dT

k
Bkdk

, we have

fk − fk+1 ≥ −αkµ[gT
k dk +

1

2
αkdT

k Bkdk]

≥ −αkµ[gT
k dk +

1

2
skdT

k Bkdk]

= −
1

2
αkµgT

k dk

≥
µǫ

2
αk‖dk‖, ∀k ∈ K.
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This and (H1) imply that

αkdk ≤ αk‖dk‖ → 0 (k ∈ K, k →∞). (12)

Also by the new Armijo search, ‖Bk‖ ≤ β implies that

‖B̂k‖ ≤ 2β + 1, ∀k. (13)

Let
K1 = {k ∈ K| αk = sk}, K2 = {k ∈ K| αk < sk},

we can prove that K1 is a finite subset. In fact, if K1 is an infinite subset, (12) and
(13) imply that

−
gT

k dk‖dk‖

(2β + 1)‖dk‖2
≤ −

gT
k dk

dT
k B̂kdk

‖dk‖ = αk‖dk‖ → 0 (k ∈ K1, k →∞),

which contradicts (10). Thus K2 must be an infinite subset and αk/ρ ≤ sk, ∀k ∈
K2. By the new Armijo search, α = αk/ρ will make the inequality in the new
Armijo search fail to hold, i.e.,

fk − f(xk + (αk/ρ)dk) < −(αk/ρ)µ[gT
k dk +

1

2
(αk/ρ)dT

k Bkdk], k ∈ K2.

Therefore

f(xk + (αk/ρ)dk)− fk ≥ (αk/ρ)µ[gT
k dk +

1

2
(αk/ρ)dT

k Bkdk]

≥ (αk/ρ)µ[gT
k dk −

1

2
(αk/ρ)dT

k B̂kdk]

≥ (αk/ρ)µ[gT
k dk −

1

2
skdT

k B̂kdk]

=
3

2
(αk/ρ)µgT

k dk, k ∈ K2.

Using the mean value theorem on the left-hand side of the above inequality, there
exists θk ∈ [0, 1] such that

(αk/ρ)g(xk + θk(αk/ρ)dk)T dk ≥
3

2
(αk/ρ)µgT

k dk, k ∈ K2.

Hence,

g(xk + θk(αk/ρ)dk)T dk ≥
3

2
µgT

k dk, k ∈ K2. (14)

By Cauchy-Schiwartz inequality, (13), (12) and (H2) we have

−(1−
3

2
µ)

gT
k dk

‖dk‖
≤

[g(xk + θk(αk/ρ)dk)− gk]T dk

‖dk‖

≤
‖g(xk + θk(αk/ρ)dk)− gk‖ · ‖dk‖

‖dk‖

= ‖g(xk + θk(αk/ρ)dk)− gk‖ → 0 (k ∈ K2, k →∞),
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which also contradicts (10) and thus the conclusion holds.
2

Theorem 3.2. If (H1) and (H2)′ hold, dk satisfies (3) and αk is defined by the
new Armijo search. Algorithm (A) generates an infinite sequence {xk} and {Bk}
is uniformly bounded, that is, there is a β > 0 such that ‖Bk‖ ≤ β, ∀k. Then

∞
∑

k=0

(−
gT

k dk

‖dk‖
)2 < +∞. (15)

Proof: Since (H2)′ implies (H2), the conclusion in Theorem 3.1 holds. Let

K1 = {k| αk = sk}, K2 = {k| αk < sk},

we obtain by (13) that

fk − fk+1 ≥ −αkµ[gT
k dk +

1

2
αkdkBkdk]

≥ −αkµ[gT
k dk +

1

2
αkdkB̂kdk]

= −
1

2
αkµgT

k dk

=
1

2
µ

(gT
k dk)2

dT
k B̂kdk

≥
µ

2(2β + 1)
(−

gT
k dk

‖dk‖
)2, k ∈ K1.

Thus,

fk − fk+1 ≥
µ

2(2β + 1)
(−

gT
k dk

‖dk‖
)2, k ∈ K1. (16)

In the case of k ∈ K2 we have αk/ρ ≤ sk, we can prove similarly as (14) that

g(xk + θk(αk/ρ)dk)T dk ≥
3

2
µgT

k dk, k ∈ K2, (17)

and thus (H2)′ implies that

−(1−
3

2
µ)

gT
k dk

‖dk‖
≤ ‖g(xk + θk(αk/ρ)dk)− gk‖ ≤ M ′αk/ρ‖dk‖, k ∈ K2,

i.e.,

αk ≥ −ρ(1−
3

2
µ)M ′−1 gT

k dk

‖dk‖2
, k ∈ K2. (18)
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Therefore,

fk − fk+1 ≥ −αkµ[gT
k dk +

1

2
αkdT

k Bkdk]

≥ −αkµ[gT
k dk +

1

2
skdT

k B̂kdk]

≥
µρ(1− 3

2µ)

2M ′
(−

gT
k dk

‖dk‖
)2, k ∈ K2.

By the above inequality, (16) and letting

η′ =
µ

2
min(

1

2β + 1
,
ρ(1− 3

2µ)

M ′
),

we have

fk − fk+1 ≥ η′(−
gT

k dk

‖dk‖
)2, ∀k. (19)

This and (H1) imply that (15) holds.
2

Corollary 3.1. If (H1) and (H2) hold, dk satisfies (5) and αk is defined by
the new Armijo search. Algorithm (A) generates an infinite sequence {xk} and
‖Bk‖ ≤ β, ∀k. Then

lim
k→∞

‖gk‖ = 0. (20)

Proof. By Theorem 3.1, we have

τ‖gk‖ ≤ −
gT

k dk

‖gk‖ · ‖dk‖
‖gk‖ = −

gT
k dk

‖dk‖
→ 0(k →∞).

The proof is finished.
2

4 Convergence Rate

In order to analyze the convergence rate, we further assume that
(H3). xk → x∗ as k → ∞, ∇2f(x∗) ≻ 0 and f(x) is twice continuously

differentiable on N(x∗, ǫ0) = {x| ‖x− x∗‖ < ǫ0}.
Lemma 4.1. Assume that (H3) holds. Then there exist 0 < m′ ≤ M ′ and

ǫ ≤ ǫ0 such that

m′‖y‖2 ≤ yT∇2f(x)y ≤ M ′‖y‖2, ∀x, y ∈ N(x∗, ǫ); (21)

1

2
m′‖x− x∗‖2 ≤ f(x)− f(x∗) ≤

1

2
M ′‖x− x∗‖2, ∀x ∈ N(x∗, ǫ); (22)
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M ′‖x− y‖2 ≥ (g(x) − g(y))T (x− y) ≥ m′‖x− y‖2, ∀x, y ∈ N(x∗, ǫ); (23)

and thus

M ′‖x− x∗‖2 ≥ g(x)T (x− x∗) ≥ m′‖x− x∗‖2, ∀x ∈ N(x∗, ǫ). (24)

By (24) and (23) we can also obtain, from the Cauchy-Schwartz inequality, that

M ′‖x− x∗‖ ≥ ‖g(x)‖ ≥ m′‖x− x∗‖, ∀x ∈ N(x∗, ǫ), (25)

and
‖g(x)− g(y)‖ ≤ M ′‖x− y‖, ∀x, y ∈ N(x∗, ǫ). (26)

Its proof can be found in the literature (e.g.[5]).

4.1 Linear Convergence Rate

Theorem 4.1. Assume that (H3) holds, dk satisfies (5) and αk is defined by
the new Armijo search and that ‖Bk‖ ≤ β, ∀k. If Algorithm (A) generates an
infinite sequence {xk}, then {xk} converges to x∗ at least R-linearly.

Proof. If (H3) holds then there exists k′ such that xk ∈ N(x∗, ǫ0), ∀k ≥ k′ and
(H1) and (H2)′ hold if x0 ∈ N(x∗, ǫ0). By Theorem 3.2 and (5) we have

fk − fk+1 ≥ η′(−
gT

k dk

‖dk‖
)2 ≥ η′τ2‖gk‖

2, k ≥ k′.

By the above inequality and Lemma 4.1, letting η = η′τ2, we obtain

fk − fk+1 ≥ η‖gk‖
2

≥ ηm′2‖xk − x∗‖2

≥
2ηm′2

M ′
(fk − f∗).

Set

θ = m′

√

2η

M ′
,

we can prove that θ < 1. In fact, by the definition of η and η′ in the proof of
Theorem 3.2, we obtain

θ2 =
2m′2η

M ′
≤

2m′2τ2η′

M ′

≤
2m′2τ2

M ′
·
µρ(1− 3

2µ)

2M ′

≤ τ2µρ(1−
3

2
µ)

≤ µρ(1 −
3

2
µ) < 1.
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By setting

ω =
√

1− θ2,

(obviously ω < 1), we obtain from the above inequalities that

fk+1 − f∗ ≤ (1− θ2)(fk − f∗)

= ω2(fk − f∗)

≤ ...

≤ ω2(k−k′)(fk′+1 − f∗).

By Lemma 4.1 and the above inequalities we have

‖xk+1 − x∗‖2 ≤
2

m′
(fk+1 − f∗)

≤ ω2(k−k′) 2(fk′+1 − f∗)

m′
,

thus

‖xk+1 − x∗‖ ≤ ωk−k′

√

2(fk′+1 − f∗)

m′
,

i.e.,

‖xk − x∗‖ ≤ ωk

√

2(fk′+1 − f∗)

m′ω2(k′+1)
.

We finally have
R1{xk} = lim

k→∞
‖xk − x∗‖1/k ≤ ω < 1,

which shows that {xk} converges to x∗ at least R-linearly.
2

4.2 Superlinear Convergence Rate

We further assume that
(H4). {Bk} is a sequence of positive definite matrices and ‖Bk‖ ≤ β, ∀k.

Algorithm (A) with dk = −B−1
k gk satisfies the following condition

lim
k→∞

‖[Bk −∇2f(x∗)]dk‖

‖dk‖
= 0. (27)

Lemma 4.2. If (H3) and (H4) hold. Algorithm (A) generates an infinite
sequence {xk}. Then there exists k′ such that

αk = 1, ∀k ≥ k′. (28)

Proof. By Corollary 3.1 and (H3) we have

lim
k→∞

xk = x∗, lim
k→∞

‖dk‖ = 0, (29)
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and thus
lim

k→∞
(xk + tdk − x∗) = 0, (30)

where t ∈ [0, 1]. Assumption (H4) implies that

dT
k [Bk −∇2f(x∗)]dk = o(‖dk‖

2). (31)

By the mean value theorem, (H3), (29), (30) and (31), for sufficiently large k, we
have

f(xk + dk)− fk = gT
k dk +

∫ 1

0

(1− t)dT
k∇

2f(xk + tdk)dkdt

= [gT
k dk +

1

2
dkBkdk]

+

∫ 1

0

(1− t)dT
k [∇2f(xk + tdk)−∇2f(x∗)]dkdt

+
1

2
dT

k [∇2f(x∗)−Bk]dk

= [gT
k dk +

1

2
dkBkdk] + o(‖dk‖

2)

≤ µ[gT
k dk +

1

2
dkBkdk].

This implies that there exists k′ making (28) valid.
2

Theorem 4.2. If (H3) and (H4) hold. Algorithm (A) generates an infinite
sequence {xk}. Then {xk} converges to x∗ superlinearly.

Proof. By Corollary 3.1 and Lemma 4.1 we know that {xk} → x∗. By Lemma
4.2, there exists k′ such that (28) holds and we have

xk+1 = xk + dk, k ≥ k′,

where dk = B−1
k gk. By the mean value theorem, Lemma 4.1 and (30), it follows

that

gk+1 − gk =

∫ 1

0

∇2f(xk + t(xk+1 − xk))(xk+1 − xk)dt

=

∫ 1

0

∇2f(xk + tdk)dkdt

= ∇2f(x∗)dk +

∫ 1

0

[∇2f(xk + tdk)−∇2f(x∗)]dkdt

= ∇2f(x∗)dk + o(‖dk‖),

thus

gk+1 = gk +∇2f(x∗)dk + o(‖dk‖)

= −Bkdk +∇2f(x∗)dk + o(‖dk‖)

= −[Bk −∇2f(x∗)]dk + o(‖dk‖).
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By (27) and the above equality we have

lim
k→∞

‖gk+1‖

‖dk‖
= 0. (32)

From (25) and (32) it follows that

‖gk+1‖

‖dk‖
≥

m′‖xk+1 − x∗‖

‖dk‖

=
m′‖xk+1 − x∗‖

‖xk+1 − xk‖

≥
m′‖xk+1 − x∗‖

‖xk+1 − x∗‖+ ‖xk − x∗‖

= m′

‖xk+1 − x∗‖
‖xk − x∗‖

1 +
‖xk+1 − x∗‖
‖xk − x∗‖

,

and thus

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0

which implies that {xk} converges to x∗ superlinearly.
2

4.3 Quadratic Convergence Rate

If we take Bk = ∇2f(xk) in the algorithm (A), then (H4) holds. we have the
following result.

Theorem 4.3. If (H3) holds, Bk = ∇2f(xk) for sufficiently large k. Algo-
rithm (A) generates an infinite sequence {xk}. Then {xk} converges to x∗ at least
superlinearly.

Proof. In this case, (H4) holds automatically, thus the results in Theorem 4.2
hold.

Theorem 4.4. If (H3) holds, Bk = ∇2f(xk) for sufficiently large k. Moreover,
there exists a neighborhood N(x∗, ǫ) = {x ∈ Rn| ‖x − x∗‖ < ǫ} of x∗ with ǫ < ǫ0
such that ∇2f(x) is Lipschitz continuous on N(x∗, ǫ), i.e., there exists L(ǫ) such
that

‖∇2f(x)−∇2f(y)‖ ≤ L(ǫ)‖x− y‖, ∀x, y ∈ N(x∗, ǫ). (33)

Algorithm (A) generates an infinite sequence {xk}. Then {xk} converges to x∗

quadratically.
Proof. By Corollary 3.1, Lemmas 4.1 and 4.2, it follows that {xk} converges

to x∗ and there exists k′ such that for all k ≥ k′, xk ∈ N(x∗, ǫ), Bk = ∇2f(xk),
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and αk = 1. Let ǫk = xk − x∗. By the mean value theorem we have

ǫk+1 = xk+1 − x∗

= xk − x∗ + dk

= ǫk −∇2f(xk)−1gk

= ǫk −∇2f(xk)−1(gk − g∗)

= ǫk −∇2f(xk)−1

∫ 1

0

∇2f(x∗ + tǫk)ǫkdt

= ∇2f(xk)−1[∇2f(xk)ǫk −

∫ 1

0

∇2f(x∗ + tǫk)ǫkdt]

= ∇2f(xk)−1

∫ 1

0

[∇2f(xk)−∇2f(x∗ + tǫk)]ǫkdt,

which and (33) imply that

‖ǫk+1‖ = ‖∇2f(xk)−1

∫ 1

0

[∇2f(xk)−∇2f(x∗ + tǫk)]dtǫk‖

≤ ‖∇2f(xk)−1‖

∫ 1

0

‖∇2f(xk)−∇2f(xk + tǫk)‖dt‖ǫk‖

≤ ‖∇2f(xk)−1‖ · L(ǫ)‖ǫk‖
2

∫ 1

0

(1− t)dt

=
1

2
‖∇2f(xk)−1‖ · L(ǫ)‖ǫk‖

2.

Therefore,

lim
k→∞

‖ǫk+1‖

‖ǫk‖2
≤

1

2
lim

k→∞
L(ǫ)‖∇2f(xk)−1‖ =

1

2
L(ǫ)‖∇2f(x∗)−1‖

which implies that {xk} converges to x∗ quadratically.
2

5 Relationship with the Trust Region Method

The relationship between the new line search method and trust region method
will be revealed in this section.

In trust region method, we need to seek a solution to the subproblem

min
p∈Rn

mk(p) = fk + gT
k p +

1

2
pT Bkp, s.t. ‖p‖ ≤ ∆k, (34)

where ∆k is a trust region radius. We define ‖ ·‖ to be the Euclidean norm, so that
the solution p∗k of (34) is the minimizer of mk(p) in the ball with the radius ∆k.
Thus, the trust region method requires us to solve a sequence of subproblems (34)
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in which the objective function and constraint (which can be written as pT p ≤ ∆2
k)

are both quadratic.
The first issue arising in defining a trust region method is the strategy for

choosing the trust region radius ∆k at each iteration. Based this choice on the
agreement between the model mk and the objective function f at the previous
iterations, we define the ratio

rk =
fk − f(xk + pk)

mk(0)−mk(pk)
, (35)

the numerator is called the actual reduction and the denominator is the predicted
reduction. Since the step pk is obtained by minimizing the model mk over a region
that includes the step p = 0, the predicted reduction will always be nonnegative.
Thus, if rk is negative, then the new objective value f(xk + pk) is greater than the
current value fk, so the step must be rejected.

On the other hand, if rk is close to 1, there is a good agreement between the
model mk and the function f over this step, so it is safe to expand the trust region
for the next iteration. If rk is positive but not close to 1, we do not alter the
trust region, but if it is close to zero or negative, we shrink the trust region. The
following algorithm describes the process.

Algorithm 5.1 (Trust Region)
Given ∆ > 0, ∆0 ∈ (0, ∆), and µ ∈ [0, 1

4 );
For k = 0, 1, 2, ...

Obtain pk by (approximately) solving (34);
Evaluate rk from (35);
if rk < 1

4
∆k+1 = 1

4‖pk‖
else

if rk > 3
4 and ‖pk‖ = ∆k

∆k+1 = min(2∆k, ∆)
else

∆k+1 = ∆k;
if rk > µ

xk+1 = xk + pk

else
xk+1 = xk;

end(for).
Sometimes, we need not to solve (34) exactly, we may find pk satisfying

mk(0)−mk(pk) ≥ c1‖gk‖min(∆k,
‖gk‖

‖Bk‖
), (36)

and
‖pk‖ ≤ γ∆k, (37)

for γ ≥ 1 and c1 ∈ (0, 1].
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Indeed, the exact solution p∗k of (34) satisfies (36) and (37) ([3]).
Lemma 5.1([3]). Let µ = 0 in Algorithm 5.1. Suppose that ‖Bk‖ ≤ β for

some constant β, that f is continuously differentiable and bounded below on the
level set

L0 = {x ∈ Rn|f(x) ≤ f(x1)},

and that all approximate solutions of (34) satisfy the inequalities (36) and (37) for
positive constants c1 and γ. We then have

lim inf
k→∞

‖gk‖ = 0. (38)

Lemma 5.2([3]). Let µ ∈ (0, 1
4 ) in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β

for some constant β, that f is Lipschitz continuously differentiable and bounded
below on the level set L0 and that all approximate solutions of (34) satisfy the
inequalities (36) and (37) for some positive constants c1 and γ. We then have

lim
k→∞

‖gk‖ = 0. (39)

In the new Armijo search, if we set pk = αkdk then

rk =
fk − fk+1

mk(0)−mk(pk)
≥ µ, (40)

and xk+1 = xk + pk is just an accepted iterative point in trust region method. It
is obvious that (40) coincides with the accepted condition in (8).

This rk is just the ratio of the actual reduction and the predicted reduction.
If the above relation holds then the new point xk = xk + pk is accepted both by
the new line search method and by the trust region method. Otherwise, we should
adjust step size in the new line search method or adjust the trust region radius in
the trust region method. In fact, if the new point xk = xk +pk is rejected, we must
reduce the step size in the new line search method or reduce the trust region radius
in the trust region method. From this point of view, the trust region method and
line search method can be unified in a general form.

6 Conclusion Remarks

In this paper we use the Armijo line search rule in a novel way and propose
a new line search method for unconstrained optimization problems. The global
convergence and convergence rate of the new method are analyzed under mild
conditions. Furthermore, each iterate generated by the new Armijo-type line search
is shown to be an approximate solution of the subproblem of a corresponding trust
region method, which reveals the relationship between line search method and trust
region method in some sense.

To put it in detail, if we let pk = αkdk in the proposed line search method then
we have the accepted condition

rk = −
fk − f(xk + pk)

gT
k pk + 1

2pT
k Bkpk

≥ µ
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which is the same condition in the trust region method; vice versa, if xk + pk is
an accepted point in the trust region method then pk = αkdk with αk = 1 must
satisfy the new Armijo search with µ ∈ (0, 1/4). This implies that the new line
search method possess the advantage of the trust region method in some sense.
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