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1 Introduction

The transportation of people and goods has been necessary in any society for
thousands of years. In modern times, transportation has become a foundation
component of human activity. A great deal of problems related to traffic and
transportation have been ingeniously resolved in the past and perhaps an even
greater number of problems will have to be overcome in the future. Now it has
been realized that more and more problems connected to traffic congestion, espe-
cially road traffic congestion in relation to the type of road networks, need to be
understood and controlled.

There exist many types of road networks in urban cities, and among these
networks some road segments are crowded with cars while others are not. To eval-
uate the phenomenon quantitatively, Oyama and Taguchi [7][8] devised the SPCP
(shortest path counting problem) and gave an approach that reflects the crowd-
edness of each road segment with respect to some special type networks. This
approach has been examined to be effective by applying them to several real cities
in Japan (Oyama and Taguchi [9]), and recently, some related studies such as
Li [4], Oyama [6], Oyama and Morohosi [10], have also been done on the topic.
However, the existing studies do not give further discussions on the fundamental
properties of SPCP such as the maximum value, the expectation and the variance
etc. accompanied with the shape of a road traffic network, and they do not con-
sider the direction of a road segment, which may not be neglected in a real road
traffic network. Here, in this paper, by considering two idealized typical networks
— grid type networks, which are common in North American cities and radial -
circular type networks, which usually appear in traditional European cities, we
discuss some useful properties of the above two road networks from the viewpoint
of SPCP. Moreover, using the obtained results, we also compare and examine their
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effectiveness. Finally, by considering the concrete direction of a road segment in
the above two road networks, we give some proposals on the design of car tracks.

The remainder of this paper is organized as follows. In the next section, we
describe the concept of SPCP, and then give the results of SPCP in grid type
networks and radial - circular type networks (Oyama and Taguchi [7][8]). Then in
the third section, we investigate their properties such as maximum values, expecta-
tions, variances, etc., and compare their effectiveness based on SPCP. In the fourth
section, we extend SPCP to DSPCP (Directed Shortest Path Counting Problem)
by considering the concrete directions in the two road networks. In the fifth sec-
tion, we give some observations on the number of car tracks of a road segment with
different directions based on the results of the previous section. Lastly, in the sixth
section, we summarize the results of the study.

2 SPCP

2.1 The concept of SPCP

In a network N = (B, E) with the vertex set B and the edge set E, the shortest
path problem is to find a path with the shortest length from a specified origin
vertex to another specified destination vertex (O-D).

Generally, when a special type network is given, there may exist more than one
shortest path between two vertices. Here, in determining a unique shortest path
between any two vertices in case there exist two or more shortest paths having the
same lengths, the following rules are applied.

1. The number of turns is minimized.

2. The number of left turns is maximized when there exist the shortest paths
having an equal number of turns.

As a result, assuming the above two rules are sufficient to determine a unique
path, there are c(c − 1) shortest paths in a network with |B| = c, so among all
these c(c−1) shortest paths, SPCP requires us to count the number of the shortest
paths passing each edge. Here, we use the symbol ω(ǫ), which is called the weight
of the edge (ǫ ∈ E), to denote the number of the shortest paths involving the edge
ǫ for a given network.

2.2 The result of SPCP in a grid type network

We consider SPCP of a grid type network G(m, n) as shown in Figure 1, con-
sisting of (m + 1)(n + 1) grid points.

Here, the set of grid points of G(m, n) is expressed as {xyz|1 ≤ y ≤ m + 1, 1 ≤
z ≤ n + 1}. In this grid type network G(m, n), Zkl and Hkl indicate a vertical edge
element connecting xkl with xk+1,l and a horizontal edge element connecting xkl

with xk,l+1, respectively. Regarding the weight ω(ǫ) of the edge ǫ with respect to
the shortest paths in a grid type network G(m, n), we obtain the following theorem.
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Theorem 1 For a given grid type network G(m, n), the weights of the edge ele-

ments Zkl and Hkl with respect to the shortest paths can be expressed as

{

ω(Zkl) = 2k(m + 1− k)(n + 1) 1 ≤ k ≤ m, 1 ≤ l ≤ n + 1
ω(Hkl) = 2l(n + 1− l)(m + 1) 1 ≤ k ≤ m + 1, 1 ≤ l ≤ n

(1)

For more details, refer to Oyama and Taguchi [7][8].
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Figure 1 Grid-type network G(m, n)

2.3 The result of SPCP in a radial-circular type network

Now we consider SPCP of a circular type network T (m, n), with m circular
roads and n radial roads as shown in Figure 2. Here, we suppose that a radial-
circular type network is divided by n radial roads with the same angle between two
neighboring roads.

Then similarly to the above subsection, the set of points of T (m, n) is expressed
as {xyz|1 ≤ y ≤ m, 1 ≤ z ≤ n} and O expresses the center. In a radial-circular
type network T (m, n), Rkl and Ckl indicate a radial edge element connecting xkl

with xk+1,l and a circular edge element connecting xkl with xk,l+1, respectively.
Regarding the weight ω(ǫ) of the edge ǫ with respect to the shortest paths in a
radial-circular type network T (m, n), we obtain the following theorem.

Theorem 2 For a given radial-circle type network T (m, n), the weights of the edge

elements Rkl and Ckl with respect to the shortest paths can be expressed as
{

ω(Rkl) = 2kmn− 2k2(2p0 + 1) + 2k 1 ≤ k ≤ m, 1 ≤ l ≤ n
ω(Ckl) = (2k − 1)p0(p0 + 1) 1 ≤ k ≤ m, 1 ≤ l ≤ n

(2)

Here, radian 2 plays an important role in determining the shortest path between
any two vertices within T (m, n), and when the angle of two vertices formed with
the center is greater than radian 2, then only radial roads are selected, while it
is smaller than radian 2, a circular road and a radial road (when necessary), are
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selected. Using this property, in our calculation, we define a parameter p0 which is
denoted as p0 = [n

π
], where [x] is the greatest integer not greater than x. Obviously,

p0 + 1 shows the number of the radial roads within radian 2.

For more details, also refer to Oyama and Taguchi [7][8].
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Figure 2 Radial-circular type network T (m, n)

3 Some properties of SPCP in two road networks

Analyzing the results of Theorem 1 from the aspects of maximum values, ex-
pectations and variances, they could be given as below. Here, to make the analysis
convenient, we suppose fraction expressions are permitted for kmax (k which maxi-
mizes ω(Zkl) in G(m, n), or maximizes ω(Rkl)), ω(Ckl)) in T (m, n)), lmax (l which
maximizes ω(Hkl) in G(m, n)) in the following.

{

ωmax(Zkl) = (n+1)(m+1)2

2 when kmax = (m+1)
2

ωmax(Hkl) = (m+1)(n+1)2

2 when lmax = (n+1)
2

(3)

{

E[ω(Zkl)] = (n+1)(m+1)(m+2)
3

E[ω(Hkl)] = (m+1)(n+1)(n+2)
3

(4)

{

V [ω(Zkl)] = (m+1)(m+2)(m−1)(m−2)(n+1)2

45

V [ω(Hkl)] = (n+1)(n+2)(n−1)(n−2)(m+1)2

45

(5)
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Figure 3 The distribution of ω(Zkl) as a function of k,l
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Figure 4 The distribution of E[ω(Zkl)] as a function of m,n

The most typical characteristic shown in (3) ∼ (5) is the symmetry for the obtained
results of ω(Zkl), ω(Hkl) with respect to m, n. From (3) ∼ (5), we can also see
that the maximum weights usually happen at the center of a grid type network
(Figure 3), and the expectations and the variances of vertical edges are more easily
affected by the number of horizontal roads m (Figure 4 ∼ 5), while the values of
horizontal edges are more easily affected by the number of vertical roads n.

We next calculate the expectation and the variance of ω(ǫ) in G(m, n).
{

E[ω(ǫ)] = (n+1)(m+1)[m(n+1)(m+2)+n(m+1)(n+2)]
3(2mn+m+n)

V [ω(ǫ)] = m(m+1)(m+2)(m−1)(m−2)(n+1)3

45(2mn+m+n) + n(n+1)(n+2)(n−1)(n−2)(m+1)3

45(2mn+m+n)

(6)

Fixing the number of the vertices in G(m, n) as |B| = (m + 1)(n + 1) = c, i.e.,
fixing the total number of the shortest paths in G(m, n) as c(c−1), we theoretically
find that the minimum values of E[ω(ǫ)](Emin), V [ω(ǫ)](Vmin) are obtained when
m = n, meaning that the same number of vertical roads and horizontal roads are
desirable when designing a grid type network over an urban area by considering
SPCP. We omit the proof of the result here since it is easy to be derived.

On the other hand, analyzing the results of Theorem 2 also from the aspects of
maximum values, expectations and variances, they could be given as below.
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Figure 5 The distribution of V [ω(Zkl)] as a function of m,n
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Figure 6 The distribution of ω(Rkl) as a function of k,l

{

ωmax(Rkl) = (mn+1)2

2(2p0+1) when kmax = (mn+1)
2(2p0+1)

ωmax(Ckl) = (2m− 1)p0(p0 + 1) when kmax = m
(7)

{

E[ω(Rkl)] = 1
3 (m + 1)(2− 2m + 3mn− 2p0 − 4mp0)

E[ω(Ckl)] = mp0(p0 + 1)
(8)

{

V [ω(Rkl)] = 1

45
(m + 1)(m − 1)(16m2 − 30m2n + 15m2n2 − 16p0 + 60mp0

+64m2p0 − 60mnp0 − 60m2np0 + 44p2

0
+ 120mp2

0
+ 64m2p2

0
− 4)

V [ω(Ckl)] = 1

3
(m + 1)(m − 1)p2

0
(1 + p2

0
)

(9)

From (7) ∼ (9), we can understand that the maximum weights of radial roads
happen at the inner side and they move to inside with the increasing of the number
of radial roads n (Figure 6 ∼ 7), while those of circular roads happen at the inmost
side in a radial-circular type network. We can also understand that the expectations
and the variances of radial edges are much more affected by the number of circular
roads m, while the values of circular edges are much more affected by the number
of radial roads n (Figure 8 ∼ 9).

Similarly to the above, we calculate the expectation and the variance of ω(ǫ) in
T (m, n).
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Figure 7 The distribution of kmax/m as a function of m,n
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Figure 8 The distribution of E[ω(Rkl)] as a function of m,n
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Figure 9 The distribution of V [ω(Rkl)] as a function of m,n
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Figure 10 n/m as a function of c for Emin, Vmin















E[ω(ǫ)] = 1
2
mp0(p0 + 1) + 1

6
(m + 1)(2 − 2m + 3mn − 2p0 − 4mp0)

V [ω(ǫ)] = 1
180

(28 − 80m2 + 52m4 + 60mn + 120m2n − 60m3n − 120m4n + 15m2n2

+90m3n2 + 75m4n2
− 8p0 − 300mp0 − 200m2p0 + 300m3p0 + 208m4p0

+60mnp0 − 210m2np0 − 510m3np0 − 240m4np0 − 98p2
0 − 120mp2

0

+475m2p2
0 + 660m3p2

0 + 208m4p2
0 − 90m2np2

0 − 90m3np2
0 − 60p3

0

+60mp3
0 + 330m2p3

0 + 120m3p3
0 − 30p4

0 + 75m2p4
0)

(10)

Fixing the number of the vertices in T (m, n) as |B| = mn + 1 = c, i.e., fixing the
total number of the shortest paths in T (m, n) as c(c− 1), we numerically find that
the minimum values of E[ω(ǫ)](Emin), V [ω(ǫ)](Vmin) are obtained when n/m holds
between 4.5 ∼ 6 for some realistic values of c such as 25 ≤ c ≤ 225, and it decreases
with the increasing of the number of the vertices c (Figure 10). The result also
offers valuable information when designing a radial-circular type network over an
urban area by considering SPCP.

Lastly, we compare Emin, Vmin of G(m, n) and T (m, n) through Figure 11 ∼ 12
to examine their efficiencies from the viewpoint of urban planning. The results show
in most cases, a radial-circular type network T (m, n) is relatively more effective
than a grid type network G(m, n) when considering their expectations, variances
of SPCP, and the tendency becomes much more clear as the number of the vertices
c increases.

4 DSPCP

4.1 The concept of DSPCP

Based on SPCP, we now define DSPCP (Directed Shortest Path Counting Prob-
lem) by differentiating the concrete direction in each edge, i.e., DSPCP requires us
to count the number of the shortest paths passing each directed edge.
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Figure 11 Emin as a function of c

Figure 12 Vmin as a function of c
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To facilitate this, in an edge ǫ, we define ǫ+ as a directed one from left to right
or for downwards, and ǫ− as a directed one from right to left or for upwards in a
grid type network. Moreover, we define ǫ+ as a directed one from the center to the
circumference or for anti-clockwise, and ǫ− as a directed one from the circumference
to the center or for clockwise in a radial-circular type network.

4.2 The result of DSPCP in a grid type network

Theorem 3 For a given grid type network G(m, n), the weights of the vertical edge

elements Z+
kl and Z−

kl with respect to the shortest paths can be expressed as
{

ω(Z+
kl) = k(m + 1− k)(2n + 3− 2l) 1 ≤ k ≤ m, 1 ≤ l ≤ n + 1

ω(Z−

kl) = k(m + 1− k)(2l− 1) 1 ≤ k ≤ m, 1 ≤ l ≤ n + 1
(11)

On the other hand, the weights of the horizontal edge elements H+
kl and H−

kl with

respect to the shortest paths can be expressed as
{

ω(H+
kl) = l(n + 1− l)(2k − 1) 1 ≤ k ≤ m + 1, 1 ≤ l ≤ n

ω(H−

kl) = l(n + 1− l)(2m + 3− 2k) 1 ≤ k ≤ m + 1, 1 ≤ l ≤ n
(12)

Proof. We calculate the number of the points in the following 6 blocks (Figure 13).
Then,































| s1 |= k(l − 1)
| s2 |= k
| s3 |= k(n + 1− l)
| s4 |= (m + 1− k)(n + 1− l)
| s5 |= m + 1− k
| s6 |= (m + 1− k)(l − 1)

Since the shortest paths from a point in block s2 to a point in block s5, a point
in block s2 to a point in block s4, and a point in block s3 to a point in block s5,
pass through Z+

kl, we can calculate ω(Z+
kl) with respect to the shortest paths as the

following.

ω(Z+
kl) = |s2| · |s5|+ |s2| · |s4|+ |s3| · |s5|

= k(m + 1− k) + k(m + 1− k)(n + 1− l) + k(n + 1− l)(m + 1− k)

= k(m + 1− k)(2n + 3− 2l)

Similarly to the above, we also calculate ω(Z−

kl) as below, respectively.

ω(Z−

kl) = |s5| · |s2|+ |s5| · |s1|+ |s6| · |s2|

= k(m + 1− k) + k(m + 1− k)(l − 1) + k(l − 1)(m + 1− k)

= k(m + 1− k)(2l − 1)

On the other hand, let us calculate the number of the points in the following 6
blocks (Figure 14). Then,
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Figure 13 The number of the points in s1– s6































| t1 |= (k − 1)l
| t2 |= (k − 1)(n + 1− l)
| t3 |= n + 1− l
| t4 |= (m + 1− k)(n + 1− l)
| t5 |= (m + 1− k)l
| t6 |= l

Using the same method introduced above, we can calculate ω(H+
kl) and ω(H−

kl).

ω(H+
kl) = |t6| · |t3|+ |t6| · |t2|+ |t1| · |t3|

1 2 l − 1 l l + 1 n n + 1

1

2

k − 1

k

k + 1

m

m + 1

t1 t2

t3

t4t5

t6

H
+

kl

H
−

kl

Figure 14 The number of the points in t1– t6
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= l(n + 1− l) + l(k − 1)(n + 1− l) + (k − 1)l(n + 1− l)

= l(n + 1− l)(2k − 1)

ω(H−

kl) = |t3| · |t6|+ |t4| · |t6|+ |t3| · |t5|

= l(n + 1− l) + l(m + 1− k)(n + 1− l) + (m + 1− k)l(n + 1− l)

= l(n + 1− l)(2m + 3− 2k)

4.3 The result of DSPCP in a radial-circular type network

Theorem 4 For a given radical-circular type network T (m, n), the weights of the

radial edge elements R+
kl and R−

kl with respect to the shortest paths can be expressed

as

ω(R+
kl) = ω(R−

kl) = k(mn + 1)− k2(2p0 + 1) 1 ≤ k ≤ m, 1 ≤ l ≤ n (13)

On the other hand, the weights of the circular edge elements C+
kl and C−

kl with

respect to the shortest paths can be expressed as

ω(C+
kl) = ω(C−

kl) = 1
2 (2k − 1)p0(p0 + 1) 1 ≤ k ≤ m, 1 ≤ l ≤ n (14)

Proof. We calculate the number of the points in the following 4 blocks (Figure 15).
Then,















| s0 |= 1
| s1 |= k
| s2 |= (2p0 + 1)(m− k)
| s3 |= m[n− (2p0 + 1)]

Since the shortest paths from the points in block s0, s2, s3 to the points in block
s1, all pass through R+

kl, we calculate ω(R+
kl) with respect to the shortest paths as

the following.

ω(R+
kl) = |s0| · |s1|+ |s2| · |s1|+ |s3| · |s1|

= k + k(2p0 + 1)(m− k) + km[n− (2p0 + 1)]

= k(mn + 1)− k2(2p0 + 1)

Similarly to the above, we also calculate ω(R−

kl) as below, respectively.

ω(R−

kl) = |s1| · |s0|+ |s1| · |s2|+ |s1| · |s3|

= k + k(2p0 + 1)(m− k) + km[n− (2p0 + 1)]

= k(mn + 1)− k2(2p0 + 1)

On the other hand, let us calculate the number of the points in the following 4
blocks (Figure 16). Here,
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Figure 15 The number of the points in s1– s4















| s′1 |= (k − 1)p0

| s′2 |= p0

| s′3 |= p0

| s′4 |= (k − 1)p0

Then since the shortest paths from a point in block s′3 to a point in block s′2, whose
angle formed with the center O is smaller than radian 2, a point in block s′3 to a
point in block s′1, whose angle formed with the center O is smaller than radian 2,
and a point in block s′4 to a point in block s′2, whose angle formed with the center
O is also smaller than radian 2, all pass through C+

kl, we calculate ω(C+
kl) with

respect to the shortest paths as the following.

ω(C+
kl) = |s′3 → s′2|+ |s′3 → s′1|+ |s′4 → s′2|

=
1

2
p0(p0 + 1) + (k − 1)

1

2
p0(p0 + 1) + (k − 1)

1

2
p0(p0 + 1)

=
1

2
(2k − 1)p0(p0 + 1)

Similarly to the above, we calculate ω(C−

kl) as below, respectively.
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ω(C−

kl) = |s′2 → s′3|+ |s′1 → s′3|+ |s′2 → s′4|

=
1

2
p0(p0 + 1) + (k − 1)

1

2
p0(p0 + 1) + (k − 1)

1

2
p0(p0 + 1)

=
1

2
(2k − 1)p0(p0 + 1)

1

2

l − 1

l + 1

n

1

2

l − 1

l + 1

n

...
m

O

1

2

l − 1

l

l + 1

n− 2n

1 2 k ...

C
+

kl

C
−

kl

S
′

1

S
′

2

S
′

3 S
′

4

n− 1
Figure 16 The number of the points in s′1 ∼ s′4

5 The proportion of car tracks with different di-

rections in two road networks

Analyzing the results of Theorem 3, we can give the distribution of the propor-
tion of car tracks with different directions in a grid type network.

{

ω(Z+
kl)/ω(Zkl) = 1− 2l−1

2(n+1) 1 ≤ l ≤ n + 1

ω(Z−

kl)/ω(Zkl) = 2l−1
2(n+1) 1 ≤ l ≤ n + 1

(15)

{

ω(H+
kl)/ω(Hkl) = 2k−1

2(m+1) 1 ≤ k ≤ m + 1

ω(H−

kl)/ω(Hkl) = 1− 2k−1
2(m+1) 1 ≤ k ≤ m + 1

(16)
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From (15), we can see that ω(Z+
kl)/ω(Zkl) decreases, ω(Z−

kl)/ω(Zkl) increases with
the increasing of l, meaning when considering DSPCP in a grid type network, it is
reasonable to design relatively more car tracks for downwards of vertical roads in
left side, while relatively more car tracks for upwards of vertical roads in right side,
and almost the same number of car tracks for both sides near the center (Figure
17).

2
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)/ω(Zkl)
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Figure 17 The proportion of ω(Z+
kl)/ω(Zkl)

Similarly to the above, from (16), we can also see that the relatively more car tracks
for left directions of horizontal roads are needed in upper place, while relatively
more car tracks for right directions of horizontal roads are needed in lower place,
and almost the same number of car tracks for both sides are needed near the center.

Figure 18 shows the imagination on the design of the number of car tracks in a
grid type network based on our investigation.

1 2 l n n + 1
1

2

k

m

m + 1

... ...

.

.

.

.

Figure 18 The number of car tracks in a grid type network

On the other hand, analyzing the results of Theorem 4, we can easily find that
the same number of car tracks for both sides are needed in each edge (Figure
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19). This shows an interesting property of the radial-circular type network when
considering DSPCP.

1

2

l − 1

l

l + 1

n− 2

n− 1

n

k... m O1 ...

Figure 19 The number of car tracks in a radial-circular type network

6 Conclusions

Analyzing and comparing the properties of the road traffic by considering the
shapes of various networks are important so that we can see much work on this
field such as Koshizuka[3], and Li and Fushimi[5]. In this paper, using SPCP, a
quantitative method proposed by Oyama and Taguchi [7][8], we investigate and
compare the properties of two typical road networks–grid type and radial-circular
type from the viewpoint of maximum weights, expectations, variances, and also
from the viewpoint of car tracks. The results of the study are concluded as follows:

1. The maximum road traffic usually reaches peak at the center except the radial
roads of a radial-circular network, where the peak takes place near the center
(inner side) but not at the center.

2. When considering the expectations and the variances of road traffic, vertical
edges are more easily affected by the number of horizontal roads m, horizontal
edges are more easily affected by the number of vertical roads n in a grid type
network, while radial edges are much more affected by the number of circular
roads m, circular edges are much more affected by the number of radial roads
n in a radial-circular type network. On the other hand, to minimize the
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above-mentioned values, the relation n/m = 1 is usually required for a grid
type network, while the relation 4.5 ≤ n/m ≤ 6 generally holds for some
realistic values of c in a radial-circular type network. Moreover, when fixing
the total number of the shortest paths and comparing two road networks
with minimum values, the structure of a radial-circular type network seems
relatively effective in holding down road traffic.

3. When considering SPCP by differentiating the directions of each road seg-
ment, i.e., DSPCP, in a grid type network, the number of car tracks is ex-
pected to be designed with the same proportion at the center for both sides,
and then gradually decreasing the proportion for clockwise direction, increas-
ing the proportion for anti-clockwise direction as the edge gets farther from
the center toward the circumference. However, in a radial-circular type net-
work, car tracks are always desired to be designed with the same proportion
for both sides, no matter for radial roads, or for circular roads.

In real urban planning, the estimation of road traffic flows and the design of
a road traffic network in association with its shape, the number of car tracks for
different directions etc., should be considered and evaluated from many aspects.
That is, the results given here could not be used or applied as they are. However, in
the initial stage of decision making, this kind of study is considered to be valuable
and meaningful by offering important and useful information before designing a
road network.

As we described in the first section of the paper, although the feasibility of
SPCP has already been examined through its applications in real societies (Oyama
and Taguchi [9]), and its O-D distribution has been theoretically proved to be a
good approach of the simple power model (Li [4], Horwood [2], Smeed [12]), we
are now also considering to develop some related models which reflect other O-D
distributions such as those based on Clark’s model (Clark [1]) and Sherratt’s model
(Sherratt [11]) etc. as the remaining topics, which seem also interesting from the
aspect of traffic engineering.
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