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1 Introduction

An outstanding performance of randomized quasi-Monte Carlo methods for
multidimensional integration problems in finance are widely appreciated. Many
financial option pricing problems use quasirandom (vector) sequences to generate
sample paths of the underlying asset price by summing up the transformed (usu-
ally by inverse normal distribution) components of each vector. In this paper we
consider the distribution of the summation of the transformed components of each
vector in the randomized quasirandom sequence. Numerical experiments for fi-
nancial option pricing problems are shown to compare randomized quasirandom
sequence and another Monte Carlo method. In Sec. 2 we introduce several notions
used in the rest part of the paper. Sec. 3 gives the investigation on the distribution
of the sum of point coordinates in scrambled nets. We present several numerical
experimental results in Sec. 5. In the final section we summarize our result.

2 Preliminaries

In this section we give a brief introduction to the numerical algorithm of option
pricing in order to show readers why multidimensional integration is necessary in
financial problems. Then we review several definitions and results on quasi-Monte
Carlo method.
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2.1 Numerical method for option pricing

Assume that, under the risk-neutral measure, the underlying asset price St

satisfies the stochastic differential equation

dSt = rSt dt + σSt dBt, 0 ≤ t ≤ T, (1)

where Bt is the standard Wiener process, r is the risk-free interest rate, and σ is the
volatility. The price of an option on S = {St; 0 ≤ t ≤ T } is the expected value of
its payoff function p(S). We approximate this option price by the expectation over
the asset prices Sj at the discrete time points {tj = j∆t; 1 ≤ j ≤ s}, ∆t = T/s.
Using a notational convention Sj for Sj∆t, the asset price Sj , as the solution of
(1), follows the recurrence relation

Sj = Sj−1 exp

(

(r − 1

2
σ2)∆t + σ

√
∆tZj

)

= S0 exp

(

(r − 1

2
σ2)tj + σ

√
∆t

j
∑

k=1

Zk

)

, j = 1, . . . , s. (2)

where S0 is the given initial price, and Zi’s are mutually independent standard
normal random variables. The option price is given by evaluating the following
expectation:

E [ p(S1, . . . , Ss)] = E [ p̃(Z1, Z1 + Z2, . . . ,
s
∑

k=1

Zk)]. (3)

We approximate this expectation by the average of the payoff function over N

discrete sample paths (z
(i)
1 , . . . , z

(i)
s ), i = 1, . . . , N .

E [ p̃(Z1, Z1 + Z2, . . . ,

s
∑

k=1

Zk)] ∼ 1

N

N
∑

i=1

p̃(z
(i)
1 , z

(i)
1 + z

(i)
2 , . . . ,

s
∑

k=1

z
(i)
k ), (4)

where (z1, . . . , zs) are generated from uniform random vector (x1, . . . , xs) over s-
dimensional unit cube [0, 1)s by inverse normal distribution function Ψ:

zj = Ψ(xj), j = 1, . . . , s. (5)

This inverse transform method is verified by considering the integration form of
the expectation and applying the rule of change of variables.

E [ p̃(Z1, . . . ,
s
∑

k=1

Zk)] =

∫

ℜs

p̃(z1, . . . ,
s
∑

k=1

zk)ϕ(z1) · · ·ϕ(zs) dz1 · · · dzs

=

∫

[0,1]s
p̃(Ψ(x1), . . . ,

s
∑

k=1

Ψ(xk)) dx1 · · · dxs, (6)

where ϕ is the density of the standard normal distribution.
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2.2 Quasi-Monte Carlo method

As shown in (6) all integral problems can be transformed into the one over the
unit cube by appropriate change of variables.

I =

∫

[0,1]s
f(x) dx. (7)

Quasi-Monte Carlo (QMC) methods use low-discrepancy point set {xi} ∈ [0, 1)s

and compute the approximate value of (7) by

Î =
1

N

N
∑

i=1

f(xi). (8)

Our investigation focuses on (t, m, s)-net, which is a widely used low-discrepancy
point set. The definition of (t, m, s)-net [4] is given below. A subset E of [0, 1)s of
the form

E =

s
∏

j=1

[

aj

bdj
,
aj + 1

bdj

)

(9)

where aj , dj , 1 ≤ j ≤ s, are integers with dj > 0, 0 ≤ aj < bdj , is called an
elementary interval in base b.

Definition 1 Let t and m be nonnegative integers and t ≤ m. A (t, m, s)-net in

base b is a set of bm points in [0, 1)s such that every elementary interval of volume

bt−m contains exactly bt points of the point set.

Generally speaking, the smaller t value is, the more uniformly distributed a (t, m, s)-
net is.
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Figure 1: A projection of (0, 1, 50)-net in base 53. (a) First 53 points of original
Faure sequence. (b) its scrambled result.

In practice, however, a (t, m, s)-net sometimes shows undesirable distribution.
See Fig. 1(a), which is the projection to first and second coordinates of (0,1,50)-net
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in base 53. This set is the first 53 points of Faure sequence in dimension s = 50.
This point set actually satisfies (0,1,50)-net property defined above, but seems very
different from uniform distribution in the unit square. Randomized quasi-Monte
Carlo (RQMC) methods are introduced to reduce this “diagonal” distribution on
the one hand, and RQMC is used to obtain an error estimation of QMC integration
on the other hand. Among several randomized methods, most powerful device may
be the following one.

Scrambling method [6].

Let {yi} be a (t, m, s)-net in base b. Suppose yi = (y
(i)
1 , . . . , y

(i)
s ) and y

(i)
j =

∑∞

k=1 y
(i)
jk b−k for integers 0 ≤ y

(i)
jk < b. A scrambled net {xi}, xi = (x

(i)
1 , . . . , x

(i)
s )

is defined as x
(i)
j =

∑∞

k=1 x
(i)
jk b−k, where x

(i)
jk is obtained by applying a random

permutation to y
(i)
jk . Specifically x

(i)
jk are determined as follows.

x
(i)
j1 = πj(y

(i)
j1 ),

x
(i)
j2 = π

jy
(i)
j1

(y
(i)
j2 ),

... (10)

x
(i)
jk = π

jy
(i)
j1 ···y

(i)
j,k−1

(y
(i)
jk ).

...

Here each π is a random permutation over {0, 1, . . . , b− 1}. In the second line the

subscript y
(i)
j1 means that the permutation depends on the value of y

(i)
j1 . In the same

way π
jy

(i)
j1 y

(i)
j2 ...y

(i)
j,k−1

is a permutation depending on the values of y
(i)
j1 , . . . , y

(i)
j,k−1.

All permutations are mutually independent. A scrambled net thus derived is also
a (t, m, s)-net in base b with the same parameter value t as the original net. For
the details of scrambling method, the reader is referred to Owen [6].

Fig. 1(b) shows the result of scrambling Fig. 1(a). One can see points are
scattered out in the unit square.

Randomly shifting method.

Let {yi} be a (t, m, s)-net in base b and u be a random vector uniformly dis-
tributed over the unit cube [0, 1)s. A randomly shifted net {xi} is given by

xi = yi + u mod 1, (11)

where (mod 1) means the componentwise (mod 1) operation.

In [2, 3] we applied these two methods to several test functions and practical
problems, and showed the both methods give reliable error estimates.
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2.3 Computational notes on unbiasedness

Although randomly shifting method always gives an unbiased estimate of the
integral, scrambling method must be implemented carefully to obtain unbiased
result. (Owen’s first paper on scrambling [5] pointed out this issue.)

Suppose we perform the scrambling procedure on leading k digits and further
digits are left untouched. This may be the usual case because we cannot make
scrambling on infinitely many digits. Then in the resulting scrambled net, each
coordinate is given by

x
(i)
j = 0.x

(i)
j1 . . . x

(i)
jk y

(i)
j,k+1 . . . .

Since x
(i)
j1 , . . . , x

(i)
jk are independent and uniformly distributed on values {0, 1, . . . ,

b − 1} but y
(i)
j,k+1, y

(i)
j,k+2, . . . are still deterministic, the expectation of x

(i)
j is given

as follow.

E [x
(i)
j ] =

1
b

∑b−1
i=0 i

b
+ . . . +

1
b

∑b−1
i=0 i

bk
+

y
(i)
j,k+1

bk+1
+ . . .

=
1

2

(

1− 1

bk

)

+
y
(i)
j,k+1

bk+1
+ . . . (12)

6= 1

2

This means that x
(i)
j is not uniformly distributed on [0, 1) and may give a biased

result in numerical integration.
A simple way to remove this bias is to combine scrambling method with shifting

method, i.e., add a uniform random vector u to the scrambled-net {xi} with modulo
1:

x
′
i = xi + u mod 1. (13)

Then each coordinate x
(i)
j

′

in the point set {x′i} satisfies E [x
(i)
j

′

] = 1
2 .

3 Distribution of the sum of point coordinates in

scrambled net

We investigate the distribution of the sample points in the numerical approx-
imation (4) which are given by the sum of components of the point in scrambled
(0, m, s)-net in base b.

s
∑

j=1

Ψ(xj) (14)

Since the sample points given by the transform Ψ : x 7→ Ψ(x) concentrate around
Ψ(1

2 ), we apply Taylor expansion around x = 1
2 to each term and use the fact that
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Ψ and even order derivatives of Ψ are zero at x = 1
2 to get

Ψ(xj) =
∞
∑

k=0

1

(2k + 1)!
Ψ(2k+1)(

1

2
)

(

xj −
1

2

)2k+1

, (15)

where Ψ(k) is the k-th order derivative of Ψ.

3.1 The case b = 2, first order approximation

We assume (x1, . . . , xm) be a point of Owen’s scrambled (0, m, s)-net in base 2
in this subsection. First we are concerned with the sum arising from the first term
of (15):

s
∑

j=1

(

xj −
1

2

)

=

s
∑

j=1

xj −
s

2
, (16)

in the special but interesting case b = 2. Let xj be denoted in base b = 2,

xj = 0.xj1xj2 . . . xjm. (17)

By the construction, each xjk takes the value 0 or 1 with the same probability 1
2

independently. Hence the sum of k-th bit
∑s

j=1 xjk follows the binomial distribu-
tion:

P {
s
∑

j=1

xjk = l} =
1

2s

(

s

l

)

. (18)

Since each bit is independent of the others, the joint distribution of the sum of each
digit of xj appearing in (16) is obtained by the product of binomial distributions.

P {
s
∑

j=1

xj1 = l1, . . . ,

s
∑

j=1

xjm = lm} =

m
∏

k=1

1

2s

(

s

lk

)

. (19)

If the dimension s is large enough to apply normal approximation

1

2s

(

s

lk

)

∼
√

2

πs
exp

(

−2(lk − s
2 )2

s

)

, (20)

the distribution (19) can be approximated as

P {
s
∑

j=1

xj1 = l1, . . . ,

s
∑

j=1

xjm = lm} ∼
(

2

πs

)m/2 m
∏

k=1

exp

(

−2(lk − s
2 )2

s

)

(21)

Our object is to find the distribution of the form P {
∑s

j=1 0.xj1 . . . xjm = l}, which
can be obtained by summing up all the probabilities for which the tuple of numbers
(l1, . . . , lm) satisfies the condition

l1
2

+
l2
22

+ . . . +
lm
2m

= l. (22)
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l1

lm

(2−1, . . . , 2−m)

2−1l1 + . . . + 2−mlm = l

Figure 2: The marginal density of multivariate normal density along the direction
(2−1, . . . , 2−m)

In case the normal approximation (20) is valid, the probability P {∑s
j=1 0.xj1 . . .

xjm = l} is approximated by P {l ≤ l1
2 + l2

22 + . . . + lm
2m ≤ l + dl} (see Fig. 2), in

other words P {∑s
j=1 0.xj1 . . . xjm = l} is approximated by the marginal density

of multivariate normal density (21) along the direction (2−1, . . . , 2−m). Since a
marginal density of multivariate normal density is also a normal density, we have

P {
s
∑

j=1

0.xj1 . . . xjm = l} ∼
√

6√
πs

exp

(

−6(l− s
2 )2

s

)

. (23)

Hence we obtain the approximation to the distribution of (16) as

P







s
∑

j=1

(

xj −
1

2

)

= l







∼
√

6√
πs

exp

(

−6l2

s

)

. (24)

This result shows that the transformed sample points (14) by scrambling method
are approximately normally distributed, while original net can have quite different
distribution.

We note that the same argument holds for any partial sum of components,
because the projection of (0, m, s)-net to any subspace of dimension s′ < s becomes
also (0, m, s′)-net by the property of (t, m, s)-net.

3.2 General b case

When b > 2, we can continue to investigate the distribution by replacing bino-
mial coefficients in Sec. 3.1 with multinomial coefficients Cb(s, k) which are defined
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by the following expansion.

(1 + x + · · ·+ xb−1)s =

s(b−1)
∑

k=0

Cb(s, k)xk. (25)

Note that if b = 2, the coefficient Cb(s, k) is reduced to binomial coefficient
(

s
k

)

.

P {
s
∑

j=1

0.xj1 . . . xjm =
l1
b

+ . . . +
lm
bm
} =

m
∏

k=1

1

bs
Cb(s, lk) (26)

Normal approximation can also be applied to the RHS of (26).

4 Numerical experiments

We compare the convergence speed of numerical integration by scrambled nets
with stratified sampling method by using option pricing problems. The sum of
point coordinates in a scrambled (t, m, s)-net, as shown in Sec. 3, is not only
approximately normally distributed in the neighborhood of the mean, but also
distributed on the discrete points with interval b−m, since each point coordinate is
given by m-digit number in base b, i.e. 0.xj1 . . . xjm.

Stratified sampling in Monte Carlo method has similar mechanism that the sam-
ples are drawn from disjoint subsets (strata) of the sample space. More specifically,
let X be a random variable on the space Ω, and A1, . . . , AK be disjoint subsets of
Ω such that ∪iAi = Ω and P {X ∈ Ai} = pi. To estimate E [X ] stratified sampling
generates ni = npi samples from Ai, where the total sample size is assumed to
be n. The samples from Ai, Xi1, . . . , Xini

, are generated independently from the
conditional distribution of X given X ∈ Ai. An unbiased estimator of E [X ] is
given by

X̂ =

K
∑

i=1

pi

ni

ni
∑

j=1

Xij . (27)

In the experiments we construct the geometric Brownian motion following “ter-
minal stratification” by [1]. Recalling the notations in Sec. 2.1, let U1, . . . , UK be
independent uniform random variables on [0, 1) and set

Vi =
i− 1

K
+

Ui

K
, i = 1, . . . , K. (28)

Then
√

TΨ(V1), . . . ,
√

TΨ(VK) form a stratified sample from normal distribution
N(0, T ), and

Ss,i = S0 exp

(

(r − 1

2
σ2)T + σ

√
TΨ(Vi)

)

, i = 1, . . . , K (29)

form a stratified sample of the terminal price.
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First we compare scrambled nets and stratified sampling in European call option
pricing. European call option has the payoff function determined by only terminal
asset price:

p(S) = (ST − E)+
def
= max{ST − E, 0}, (30)

where E is the exercise price.
In the experiment we set s = 50, S0 = 100, T = 0.2, K = 100, r = 0.05, and

σ = 0.3. We use two kinds of (t, m, s)-nets, one is generated from Faure sequence,
which is (0, m, 50)-net in base 53, and another is generated from Sobol’ sequence,
which is (t, m, s)-net in base 2 with t 6= 0. The number of strata K is chosen to be
a power of 53 for the comparison with scrambled Faure sequence. For example, we
use K = 532 strata to compare with scrambled (0,2,50)-net in base 53.

In case of scrambled net, we calculate the M estimates, Î(1), . . . , Î(M) by ap-
plying independent scrambling to the original net, then we obtain the estimate Î
by arithmetic mean of those M estimates:

Î =
1

M

M
∑

i=1

Î(i), (31)

and the error estimate of Î by the standard deviation of M estimates:

σ̂ =

(

1

M(M − 1)

M
∑

i=1

(Î(i) − Î)2

)1/2

. (32)

In stratified sampling, for the comparison with scrambled nets we compute the

estimate by using K sample asset prices S
(1)
s,j

Î(1) =
1

K

K
∑

j=1

exp(−rT )p(S
(1)
s,j ). (33)

Then generating another independent stratified sample of K prices, we compute
another estimate Î(2), and so on. After repeating this procedure M times, we
compute the final estimate Î and estimated error σ̂.

Fig. 3(a) shows the relative error |Î/I| of each method for M = 10 repetitions,
here I is the true price of the option. Fig. 3(b) shows the estimated standard error
σ̂/I. In this experiment stratified sampling method is superior to the scrambled
net method. This example is essentially one-dimensional problem, because the
integrand (i.e. payoff function) depends only on the terminal asset price. This
results implies stratified sampling method gives better sample distribution than
scrambled net methods in one-dimensional case. The case of scrambled Faure
sequence does not show a monotone convergence of relative errors at N = 534 ≈
8 × 106. We do not have good explanation for this result, although the estimated
standard error is monotonically decreasing and the 95% confidence interval [Î −
1.96σ̂, Î + 1.96σ̂] includes the true value I.
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Figure 3: Experimental results for European call option: (a) Relative error by
scrambled Sobol’, scrambled Faure, and stratified sampling. (b) Estimated relative
error of each method.

Stratified sampling method approaches a trapezoidal rule in (deterministic) nu-
merical integration, when the number of strata becomes large. In one-dimensional
numerical integration trapezoidal rule is efficient especially for exponential inte-
grands. We consider that this rapid convergence of stratified sampling is due to its
close relation to trapezoidal rule and that scrambled method also partially takes
over the trapezoidal property because of its sample points’ discreteness.

Second we apply the two methods to the pricing of barrier option. Barrier
options have several forms of payoff function. Here we use a down-and-out call
option, which has a barrier level H below the exercise price E and gives the same
payoff as European call option if the asset price is always above the barrier H from
the initial time 0 to the maturity T . Hence the payoff function of the down-and-out
call option with a barrier level H and exercise price E is given by

p(S) = (ST −K)+ × 1{ min
0≤t≤T

St > H}, (34)

where 1{A} is the indicator function that has the value 1 if A is true, and 0 if A
is false. Pricing a barrier option requires not only the terminal asset price but also
full path of geometric Brownian motion. After generating terminal stratified values
Vi, the following algorithm in [1] generates K geometric Brownian paths stratified
by terminal price. Let ∆t = T/s and tj = j∆t.

for i = 1, . . . , K

W0,i := 0, Ws,i := Ψ(Vi), and Ss,i := S0 exp
(

(r − 1
2σ2)T + σ

√
TWs,i

)

for j = 1, . . . , s− 1

generate Z ∼ N(0, 1)

Wj,i :=
tm−tj

tm−tj−1
Wj−1,i +

tj−tj−1

tm−tj−1
Ws,i +

√

(tm−tj)(tj−tj−1)
tm−tj−1

Z
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Figure 4: Experimental results for barrier option. Relative error by scrambled
Sobol’, scrambled Faure, and stratified sampling.

Sj,i := S0 exp
(

(r − 1
2σ2)tj + σ

√
tjWj,i

)

In the experiment we use the barrier value H = 95 and other parameters are
same as the previous ones. In Fig. 4, stratified sampling does not seem to work well
in barrier option, i.e. it gives strongly biased result, while scrambled method shows
stable convergence. The terminal stratification may induce biased distribution of
Brownian sample paths, but scrambled net has good approximate distribution.

5 Concluding remarks

This paper investigated the distribution of the sum of coordinates of the points
in a scrambled net, and compared the scrambled net integration and stratified
sampling method by numerical experiments of financial option pricing problems. In
European call option pricing, stratified sampling is superior to scrambling method
in convergence speed, but in a more complicated example, barrier option pricing,
stratified sampling fails to give the rapid convergence and seems to give a biased
result. Scrambling method gives a reliable result with relatively fast convergence.

Tune-up of Monte Carlo method, such as stratified sampling method, sometimes
shows remarkable improvement in convergence speed. But one technique which
proved a great success in some case does not necessarily give good results in another
case. Randomized quasi-Monte Carlo methods, such as scrambled nets, can be
applicable to wide range of problems in high dimensional integration without special
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tune-up. The reason why RQMC works well is still unclear. Our investigation
on the distribution of sum of coordinates may give a partial explanation on why
RQMC works well but not-randomized QMC shows poor performance, although the
consideration is on very limited cases. More detailed analysis on the distribution
of sum will be a future work.
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