
Lowering Eccentricity of a Tree by

Node-Upgrading∗

Toshihide Ibaraki1 Xiao-guang Yang2

1 Department of Informatics, School of Science and Technology

Kwansei Gakuin University, Sanda, Japan 669-1337
2 Institute of Systems Science, Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100080, China

Abstract The eccentricity lowering problem is to reduce the eccentricity of
a communication network within a given bound, by upgrading some nodes (i.e.,
shrinking the lengths of the edges linking to such nodes), where we want to mini-
mize the required cost. We consider two types of node-upgrading strategies; i.e., the
continuous upgrading and the discrete upgrading, where the improvement under the
first strategy is a continuous variable, and the improvement under the second strat-
egy is a fixed amount. These problems are NP-hard for the general graph. When
the graph is a tree, we present an O(|V |2) time algorithm to solve the eccentricity
lowering problem under the continuous upgrading strategy. However, the problem
under the discrete upgrading strategy is still NP-hard even if the graph is a line.

Keywords eccentricity, communication networks, node upgrading, discrete
upgrading strategy, continuous upgrading strategy, tree

1 Introduction

In a communication network, the communication delay on the edges from a
node can be reduced by node-upgrading (i.e., to install a faster communication
equipment at the node). This strategy is sometimes applied to improve the com-
munication quality of the network.

Given a network, the eccentricity of a node is defined as the largest distance
from the designated node to other nodes. Identifying the delay of an edge as
its length, we consider the problems of how to reduce the eccentricity of a given
network by node-grading strategies in the minimum cost. These problems have

∗The research was supported by the Scientific Grant in Aid by the Ministry of Education,
Science, Culture and Sports of Japan, by the 21 Century COE Program of Japan “Informatics
Research Center for Development of Knowledge Society Infrastracture”, and by the National Key
Research and Development Program of China (Grant No. 2002CB312004) and NSFC (Grant No.
70425004).

1

many potential applications in real world such as broadcasting, facility-accessing
and so forth.

Let a graph G = (V, E) represent a communication network, where node set V
stands for the transmission stations, and edge set E stands for the links between
transmission stations. The communication delay d(u, v) associated with an edge
(u, v) from u to v, can be decomposed into three parts, s(u) the sending time from
node u, t(u, v) the transmission time over link (u, v), and r(v) the receiving time
at v; i.e., d(u, v) = s(u) + t(u, v) + r(v). The communication delay between any
two nodes (adjacent or nonadjacent) is given by the length of the shortest path
between the two nodes, where d(u, v) is regarded as the length of edge (u, v). For
any node v, upgrading it will shorten the sending time and the receiving time at v.
We consider two types of upgrading strategies, the continuous upgrading strategy
and the discrete upgrading strategy.

In the continuous upgrading strategy, each node v is given two positive shrink-
ing coefficients ts(v) > 0, tr(v) > 0 and a cost coefficient c(v) ≥ 0. Also v is
associated with a continuous variable 0 ≤ xv ≤ b(v) (called improvement made at
v), where b(v) is the upper bound on the improvement. The sending time from
node v under improvement xv becomes max{s(v) − ts(v)xv, 0} and the receiving
time at v becomes max{r(v) − tr(v)xv, 0}. Without loss of generality, we assume

that b(v) ≤ max{ s(v)
ts(v) ,

r(v)
tr(v)}. The eccentricity lowering problem under continuous

upgrading strategy is to find a vector x : V → R
|V |
+ that minimizes the total cost

∑

v∈V

c(v)xv under the constraints that the eccentricity of a designated node v0 after

the upgrading is within U and xv ≤ b(v) holds for all nodes v. This problem is
denoted as CELP (continuous version of the eccentricity lowering problem).

In the discrete upgrading strategy, each node v is given three fixed values 0 ≤
ps(v) ≤ s(v), 0 ≤ pr(v) ≤ r(v) and c(v) ≥ 0. If node v is upgraded, the sending
time will become s(v) − ps(v), and the receiving time will become r(v) − pr(v)
at the cost of c(v). The eccentricity lowering problem under discrete upgrading
strategy is to find a subset S ⊆ V such that upgrading all nodes in S reduces the
eccentricity of the source node v0 within a given level U at the minimum total
cost

∑

v∈S

c(v). We denote the problem as DELP (discrete version of the eccentricity

lowering problem).
The difference between the continuous upgrading strategy and the discrete up-

grading strategy is that, the cost and reduction under the continuous upgrading
strategy depend linearly on the magnitude of the improvement xv made at each
node v, but the cost and reduction under the discrete upgrading strategy depend
only on whether the nodes are upgraded or not.

It easily follows from the known results (as briefly surveyed in the next section)
that both DELP and CELP are NP-hard. So our attention focuses on graphs with
some simple structures. Our main result in Section 4 shows that CELP can be
solved in O(|V |2) time if the graph is a tree.

2 International Symposium on OR and Its Applications 2005

2 Literature Review

The node-based upgrading was first studied by Paik and Sahni [10]. The authors
considered that the delay of an edge is reduced by a factor α if one endpoint of
the edge is upgraded, and by α2 if both endpoints of the edge are upgraded, where
0 ≤ α < 1 is a constant. The objective is to find a minimum number of nodes to be
upgraded such that there exists some subgraph with a specific structure to satisfy
delay requirements. For example, problem ShortPath(x, B) seeks the smallest
number of nodes to be upgraded such that no pair of nodes has the shortest path
of length > B. This problem is the same as ours except that the upgrading strategy
is different. Paik and Sahni showed that several node upgrading problems are NP-
hard. Recently Krumke et al. [6, 7, 8, 9] generalized Paik and Sahni’s model of
[10]. They associated each edge e with three integers d0(e) ≥ d1(e) ≥ d2(e), where
di(e) describes the delay of e when exactly i of its endpoints are upgraded. The
cost c(v) of upgrading v is also associated. The node upgrading problem considered
by them are the bottleneck tree upgrading problem and the minimum length tree
upgrading problem, which are to find a minimum cost set of upgraded nodes so
that the resulting network has a spanning tree such that the maximum delay and
the total delay of the spanning tree do not exceed given bounds. Krumke et al.
[7, 8] presented O(log |V |) approximating algorithms for these problems.

There is a related class of network improvement problems called the edge-
upgrading problem, where the lengths of edges are reduced. This class of problems
has been studied in [1, 2, 11, 12]. For a general graph, it is hard to approximate
within an O(log |V |) approximation ratio. If the graph is a tree, however, some
polynomial algorithms have been presented [1, 11]. In particular, Zhang et al. [11]
contains an O(|V | log |V |) time algorithm.

3 Summary of results

Concerning problems CELP and DELP as defined above, we obtained the fol-
lowing results.

Theorem 1 If the underline graph G = (V, E) is a general graph, both CELP and
DELP are strongly NP-hard.

Theorem 2 Even if the underline graph G = (V, E) is a line, DELP is NP-hard,
but admits a PTAS.

Theorem 3 If the underline graph G = (V, E) is a tree, CELP can be solved in
O(|V |2) time.

The proofs of the first two theorems can be found in the accompanying pa-
per [5]. In this reference, it is also stated that CELP on a tree can be solved
in O(|V | log |V |) time, which is shown by reducing CELP to the edge upgrading
problem and applying the algorithm of [12] to it. Although the time bound of our

Lowering Eccentricity of a Tree by Node-Upgrading 3

result is inferior, we present the proof of theorem 3, since it is based on a different
formulation (i.e., as a convex programming problem), which may turn out to be
useful for more general problems.

4 Problem CELP on a Tree

4.1 Problem formulation

Assume that a tree T = (V, E), a designated node v0 ∈ V and a bound U on
the eccentricity are given. It is clear that the problem is feasible if and only if
the eccentricity of the network becomes within U when all nodes are upgraded to
their upper bounds. From now on, we assume that the problem is feasible. Also,
we regard the given tree T as a directed tree with the orientation from the source
node v0 to all leaves. Let L denote the leaf set of the tree (excluding v0 if v0 itself
is a leaf node).

Assuming that xv be the improvement made at an intermediate node v, let us
consider the distance reduction yv of the paths from v0 to leaf nodes incurred by
xv. By the definition of the continuous upgrading strategy, yv varies on different

intervals; when 0 ≤ xv ≤ min{ s(v)
ts(v) ,

r(v)
tr(v) , b(v)}, then we have yv = (ts(v)+tr(v))xv ;

when s(v)
ts(v) < b(v) ≤ r(v)

tr(v) and s(v)
ts(v) < xv ≤ b(v), then we have yv = s(v) + tr(v)xv;

when r(v)
tr(v) < b(v) ≤ s(v)

ts(v) and r(v)
tr(v) < xv ≤ b(v), then we have yv = r(v) + ts(v)xv.

For the source node v0 (and each leaf node l ∈ L), we can define tr(v0) := 0

(and ts(l) := 0), and define r(v0)
tr(v0) := 0 (and s(l)

ts(l) := 0 respectively). Then all nodes

can be treated in an unified way.
Note that yv is an increasing function in xv, and therefore xv can be written as

the inverse function of yv. Let σ
(1)
v = 1

ts(v)+tr(v) , and

σ(2)
v =

{

1
ts(v) , if s(v)

ts(v) < r(v)
tr(v) ,

1
tr(v) , otherwise.

(1)

Let y
(0)
v = 0; y

(1)
v = (ts(v) + tr(v))min{ s(v)

ts(v) ,
r(v)
tr(v) , b(v)}; y

(2)
v = s(v) + tr(v)b(v) if

s(v)
ts(v) < b(v) ≤ r(v)

tr(v) , or y
(2)
v = r(v) + tr(v)b(v) if r(v)

tr(v) < b(v) ≤ s(v)
ts(v) . Then xv is

written as

xv =

σ
(1)
v yv, if y

(0)
v ≤ yv ≤ y

(1)
v ,

σ
(1)
v y

(1)
v + σ

(2)
v (yv−y

(1)
v),

if y
(1)
v < yv ≤ y

(2)
v .

(2)

We transform c(v)xv , the cost incurred by xv, into a cost function in yv as follows

4 International Symposium on OR and Its Applications 2005

(see Fig. 1):

c̃v(yv) =

+∞, yv < y
(0)
v ,

c(v)σ
(1)
v yv, y

(0)
v ≤ yv ≤ y

(1)
v ,

c(v)(σ
(1)
v y

(1)
v + σ

(2)
v (yv − y

(1)
v)),

y
(1)
v < yv ≤ y

(2)
v ,

+∞, yv > y
(2)
v .

(3)

Figure 1: Cost function c̃v(yv)

It is straightforward to see that c̃v(yv) is a piecewise linear, convex and in-
creasing function in its proper region. Moreover c̃v(yv) has at most three breaking

points y
(0)
v , y

(1)
v , y

(2)
v , and c̃v(y

(0)
v) = 0 always holds.

At these breaking points, the subgradients of c̃v(yv) are given as follows.

∂c̃v(y
(0)
v) = [−∞, c(v)σ

(1)
v],

∂c̃v(y
(1)
v) = [c(v)σ

(1)
v , c(v)σ

(2)
v],

∂c̃v(y
(2)
v) = [c(v)σ

(2)
v , +∞].

We denote the upper subgradient by ∂+c̃v(yv), and the lower subgradient by

∂−c̃v(yv). For example, we have ∂+c̃v(y
(1)
v) = c(v)σ

(2)
v , and ∂−c̃v(y

(1)
v) = c(v)σ

(1)
v .

It is easily seen that ∂−c̃v(yv) = ∂+c̃v(yv) holds if yv is not a breaking point,
and furthermore the upper subgradient at a breaking point is equal to the lower
subgradient at the next breaking point.

Now we are ready to give a convex program formulation for CELP. We introduce
some notations. For each pair of nodes u and v, there is the unique path between
them, which we denote by the node set N(u, v) in the path. For each l ∈ L, denote

Lowering Eccentricity of a Tree by Node-Upgrading 5

D(l) the length of the path from v0 to l (called v0-l path) before any upgrading.
Let

∆l = max{D(l)− U, 0}, l ∈ L,

i.e., the excess of D(l) over U . Then CELP can be formulated as follows:

minimize
∑

v∈V

c̃v(yv)

subject to
∑

v∈N(s,l)

yv ≥ ∆l, l ∈ L.
(4)

4.2 Algorithm for solving CELP

For each v ∈ V , let Lv := {l ∈ L | v ∈ N(v0, l)}. We call Lv the set of leaf
nodes covered by v. From the tree structure, we have that Lv ∩Lu 6= ∅ if and only
if either Lv ⊆ Lu or Lu ⊆ Lv holds.

Given a subset Q ⊆ L, we call a subset V ′ ⊆ V a v0-Q cut if
(1) Lv ∩ Lu = ∅ for any v, u ∈ V ′ with v 6= u,
(2)

⋃

v∈V ′

Lv ⊇ Q.

Given a current solution y = (yv : v ∈ V), define the weight of v at y by

wv(y) = ∂+c̃v(yv), v ∈ V. (5)

Then a minimum v0-Q cut at y is a v0-Q cut V ′ that minimizes its weight sum
∑

v∈V ′

wv(y).

The main idea of our algorithm is to reduce the eccentricity iteratively by using
the minimum v0-Q cuts. It can be described as follows.

Algorithm OPT-CELP:

Step 1: Let yv := 0 for all v ∈ V .
Step 2: For each l ∈ L, let ∆′

l(y) := ∆l −
∑

v∈N(s,l)

yv. Let

∆′
max(y) := max{∆′

l(y) | l ∈ L},

Q(y) := {l ∈ L | ∆′
l(y) := ∆′

max(y)}.

Step 3: If ∆′
max(y) = 0, halt; the current y is an optimal solution.

Step 4: Let Vmin(y) be a minimum v0-Q(y) cut with respect to weights wv(y).
Let Q(y) := L \ (

⋃

v∈Vmin(y)

Lv), and let

α(y) :=

{

min{∆′
max(y)−∆′

l(y) | l ∈ Q(y)}, if Q(y) 6= ∅,
+∞, otherwise.

For each v ∈ Vmin(y), let y
(next)
v (y) be the smallest breaking point of c̃v(yv) which

is greater than yv. Let

β(y) := min{∆′
max(y), α(y), min{y(next)

v (y)− yv |

v ∈ Vmin(y)}}.

6 International Symposium on OR and Its Applications 2005

Step 5: Upgrade yv := yv + β(y) for all v ∈ Vmin(y), and return to Step 2.

The implications of the notations introduced in Algorithm OPT-CELP are as
follows. At the current solution y, ∆′

l(y) is the remaining reduction for l ∈ L,
∆′

max(y) is the largest remaining reduction, Q(y) is the set of leaf nodes with the
largest remaining reduction, Q(y) is the set of leaf nodes which are not covered by
the nodes in Vmin(y), and α(y) is the difference between the current eccentricity
and the longest path from v0 to the leaf nodes l ∈ Q(y). Based on these, β(y) is
the largest possible increment of yv, v ∈ Vmin(y), before the eccentricity reaches U
under the conditions that the remotest leaf nodes remain to be remotest and none

of the new yv, v ∈ Vmin(y), exceed the next breaking points y
(next)
v (y).

After obtaining the optimal distance reduction y∗ by Algorithm OPT-CELP,
we can convert it into the optimal improvement x∗ by (2).

4.3 Validity of OPT-CELP

(i) Algorithm OPT-CELP is well-defined.
To this end, we need to show that β(y) > 0 holds in Step 5. It is straight-

forward to see that ∆′
max(y) > 0 and α(y) > 0 in Step 4. Therefore we prove

min{y
(next)
v (y)− yv | v ∈ Vmin(y)} > 0.

By the definition of c̃v(yv), wv(yv) = +∞ holds if the current yv reaches its

largest breaking point y
(2)
v ; otherwise it is possible to increase yv further. By the

feasibility assumption of the instance, and by ∆′
max(y) > 0 in Step 4, we know that

any l ∈ Q(y) must have a node v ∈ N(s, l) such that yv < y
(2)
v . Otherwise this

v0-l path can not be shortened anymore, which is a contradiction to the feasibility

assumption. Thus all nodes v ∈ Vmin(y) satisfy yv < y
(2)
v by the minimality of

v0-Q(y) cut, and hence we have yv < y
(next)
v (y) for all v ∈ Vmin(y).

(ii) Algorithm OPT-CELP terminates in finite iterations.
¿From the definitions of α(y) and β(y), ∆′

max(y) is reduced exactly by β(y) at
each execution of Step 5, but the remotest leaf nodes remain to be remotest at the
end of each iteration. As β(y) > 0 always holds as shown in (i), ∆′

max(y) strictly
decreases in each iteration.

After each iteration, one of the following three cases occurs depending on the
value of β(y).

(1) We have β(y) = ∆′
max(y) and Algorithm OPT-CELP halts.

(2) We have β(y) = α(y), and at least one leaf node in Q(y) will enter Q(y)
after this iteration. Q(y) strictly increases in the next iteration.

(3) We have β(y) = y
(next)
v (y)− yv for some node v ∈ Vmin(y), and yv proceeds

to the next breaking point y
(next)
v (y) and its weight wv(y) changes by (5).

Since either Q(y) strictly increases or some yv proceeds one breaking point, and
the number of breaking points for each node is at most three, the total number of
iterations is at most |L|+ 2|V | < 3|V |.

(iii) Algorithm OPT-CELP converges to an optimal solution.

Lowering Eccentricity of a Tree by Node-Upgrading 7

For this, recall the Karush-Kuhn-Tucker condition for the optimality of convex
programming problem (4).

Lemma 1 [4] A solution y∗ = (y∗v : v ∈ V) is an optimal solution of (4) if and
only if

(a) y∗ is feasible, i.e.,
∑

v∈N(v0,l)

y∗v ≥ ∆l for all l ∈ L;

(b) there exist Lagrangian multipliers λ∗ = (λ∗l : l ∈ L) such that

λ∗l ≥ 0, l ∈ L, (6)

λ∗l = 0, if l ∈ L and
∑

v∈N(v0,l)

y∗v > ∆l, (7)

∑

l∈Lv

λ∗l ∈ ∂c̃v(y
∗
v), v ∈ V. (8)

Note that the solution y in each iteration of Algorithm OPT-CELP does not
satisfy (a) before the algorithm halts, but becomes feasible when the algorithm
halts.

To show the optimality of the solution obtained by Algorithm OPT-CELP, we
will construct Lagrangian multiplies λ after each iteration such that y and λ satisfy
conditions (6)-(8). Thus, when the algorithm halts, both conditions of Lemma 1
are satisfied, showing the optimality.

For the initial solution y = 0, i.e., yv = y
(0)
v for v ∈ V , we start with λl = 0

for all l ∈ L. It is trivial to see that conditions (6)-(8) are satisfied because
∑

l∈Lv

λl = 0 ∈ ∂c̃v(y
(0)
v) for all v ∈ V .

Now assume that there exists a vector λ together with the current y satisfying
the following conditions:

λl ≥ 0, l ∈ L, (9)

λl = 0, if l /∈ Q(y), (10)

∂c̃−v (yv) ≤
∑

l∈Lv

λl ≤ ∂c̃+
v (yv) = wv(y), v ∈ V. (11)

Note that if
∑

v∈N(v0,l)

yv > ∆l holds for some l ∈ L, then ∆′
l < 0 in Step 2, and

hence l /∈ Q(y) by the definition of Q(y). Thus condition (10) implies condition (7).
Therefore if y and λ satisfy conditions (9)-(11), then they also satisfy conditions
(6)-(8). Moreover, it is straightforward to see that the initial solution y = 0 and
the initial Lagrangian multiplies λ = 0 satisfy conditions (9)-(11).

For v ∈ V , let Qv(y) := Lv ∩Q(y), and define

δv = wv(y)−
∑

l∈Lv

λl = wv(y)−
∑

l∈Qv(y)

λl. (12)

By (11), we have δv ≥ 0 for all v ∈ V .

8 International Symposium on OR and Its Applications 2005

For a node v ∈ Vmin(y), let V ′ be any v-Qv(y) cut. We claim that

δv ≤
∑

u∈V ′

δu (13)

holds. To prove this, note that v ∈ Vmin(y) implies

wv(y) ≤
∑

u∈V ′

wu(y). (14)

For otherwise, we can replace the v ∈ Vmin by V ′ to obtain a v0-Q(y) cut with
a smaller weight, which is a contradiction. Notice also that we have

∑

l∈Lv

λl =
∑

l∈Qv(y)

λl =
∑

u∈V ′

∑

l∈Qu(y)

λl =
∑

u∈V ′

∑

l∈Lu

λl. Then combining this with (14) and

δu ≥ 0 for all u ∈ V , we obtain

δv = wv(y)−
∑

l∈Lv

λl ≤
∑

u∈V ′

wu(y)−
∑

u∈V ′

∑

l∈Lu

λl =
∑

u∈V ′

δu.

Now let y′ be the new solution updated in Step 5, i.e.,

y′v =

{

yv + β(y), v ∈ Vmin(y),
yv, v ∈ V \ Vmin(y).

We distribute the margin δv to all λl, l ∈ Qv(y), to construct Lagrangian
multipliers λ′ for y′, by the following procedure.

Procedure DIST:

Step 1: Let δ′u := δu for all nodes u in the subtree of v. Arrange the leaf nodes
in Qv(y) in an arbitrary order. Start from the first node in Qv(y), say l.

Step 2: Let γl := min{δ′u | u ∈ N(v, l)}, and let λ′l := λl + γl. For each
u ∈ N(v, l), update δ′u := δ′u − γl.

Step 3: If δ′v = 0 holds, then halts. Otherwise, return to Step 2 with the next
node l in Qv(y).

Inequality (13) tells that
∑

u∈V ′ δu is big enough for any v-Qv(y) cut V ′ to
cover δv. Thus Procedure DIST is well-defined and halts in Step 3.

We now show that the new y′ and λ′ defined above satisfy (9)-(11). From
Procedure DIST, λ′l never decreases for any l ∈ L, and may increase only for
l ∈ Q(y). Since Q(y) is nondecreasing in each iteration as shown in (ii), it is trivial
to see that y′ and λ′ satisfy (9) and (10). To consider condition (11), note that
y′v 6= yv is possible only for v ∈ Vmin(y). For v ∈ Vmin(y), if none of yv and y′v
is a breaking point, we have ∂−c̃v(yv) = ∂+c̃v(yv) = ∂−c̃v(y

′
v) = ∂+c̃v(y

′
v), and if

at least one of them is a breaking point, we have ∂+c̃v(yv) = ∂−c̃v(y
′
v). Thus y′

satisfies

∂+c̃v(yv) = wv(y) = ∂−c̃v(y
′
v),

for all v ∈ Vmin(y), (15)

∂c̃v(yv) = ∂c̃v(y
′
v),

for all v ∈ V \ Vmin(y). (16)

Lowering Eccentricity of a Tree by Node-Upgrading 9

By Procedure DIST and (12) we have for v ∈ Vmin,

∑

l∈Lv

λ′l =
∑

l∈Lv

λl + δv = wv(y) = ∂−c̃v(y′v) ∈ ∂c̃v(y
′
v).

Also for any node u 6= v in the subtree rooted at v, we have

∑

l∈Lu

λl ≤
∑

l∈Lu

λ′l ≤
∑

l∈Lu

λl + δu = wu(y) = ∂+c̃u(yu).

The first inequality holds because λ′l ≥ λl for all l ∈ L, and the second inequality
holds because Step 2 in Procedure DIST guarantees that the total increment of
λ′l from λl for l ∈ Qu(y) does not exceed δu. As

∑

l∈Lu

λl ≥ ∂−c̃u(yu) by (11), we

obtain
∑

l∈Lu

λ′l ∈ ∂c̃u(yu) = ∂c̃u(y′u).

Finally denote the set of the remaining nodes between v0 and Vmin(y) (not
including the nodes in Vmin(y)) by V −(y). For u ∈ V −(y), let V u

min(y) be the set of
nodes in Vmin(y) which lie on the paths from u to L. Once again, by the definition
of a minimum v0-Q(y) cut, we have

wu(y) ≥
∑

v∈V u

min
(y)

wv(y), (17)

since otherwise, we can replace V u
min(y) by u to obtain a v0-Q(y) cut with a smaller

weight. Then
∑

l∈Lu

λl =
∑

v∈V u

min
(y)

∑

l∈Lv

λl, (12), (16) and (17) together imply

δu ≥
∑

v∈V u

min
(y)

δv,

and hence
∑

l∈Lu

λ′l =
∑

v∈V u

min
(y)

∑

l∈Lv

λl +
∑

v∈V u

min
(y)

δv

≤
∑

l∈Lu

λl + δu = wu(y) = ∂+c̃u(yu)

= ∂+c̃u(y′u).

As
∑

l∈Lu

λ′l ≥
∑

l∈Lu

λl ≥ ∂−c̃u(yu) follows from (11), we have
∑

l∈Lu

λ′l ∈ ∂c̃u(yu) =

∂c̃u(y′u).
Combining the above three cases, we conclude that λ′ and y′ satisfy (9)-(11).

Since condition (a) is satisfied when Algorithm OPT-CELP halts, we proved the
following theorem by induction and Lemma 1.

Theorem 4 Algorithm OPT-CELP obtains an optimal solution of (4) for problem
CELP on a tree.

10 International Symposium on OR and Its Applications 2005

4.4 Time complexity of OPT-CELP

Now let us derive the complexity of Algorithm OPT-CELP. It is straightforward

to see that ∆′
l(y), ∆′

min(y), Q(y), α(y) and min{y
(next)
v (y)− yv | v ∈ Vmin(y)} can

be computed in O(|V |) time in each iteration of OPT-CELP. We show that the
computation of a minimum v0-Q(y) cut, Vmin(y), is also done in O(|V |) time.

For the current solution y, denote the set of nodes lying on the paths from v0 to
the nodes in Q(y) by V (y). For an arc (u, v), we call v a child of u, and denote the
set of child nodes of u by C(u). We use the following procedure to find a Vmin(y).
Procedure MINCUT:

Step 1: For all v ∈ Q(y), let ξv := wv(y) and Vv := {v}, and mark all nodes in
Q(y).

Step 2: If v0 is marked, then halt. Vmin(y) := Vv0
is a minimum v0-Q(y) cut

with weight ξv0
.

Step 3: Choose any unmarked node v ∈ V (y) such that all its child nodes are
all marked, and mark this node v. If wv(y) ≤

∑

u∈C(v)

ξu, then let ξv := wv(y) and

Vv := {v}, otherwise let ξv :=
∑

u∈C(v)

ξu, and Vv :=
⋃

u∈C(v)

Vu. Return to Step 2.

In Procedure MINCUT, it is not difficult to see that Vv obtained in Step 3 is
a minimum v-Qv(y) cut with its weight ξv. Thus Vmin(y) obtained in Step 2 is a
minimum v0-Q(y) cut. Moreover as each node is marked once, and the operations
in Step 3 can be done in O(1) time, MINCUT runs in O(|V |) time.

Thus the computation time of each iteration of Algorithm OPT-CELP is O(|V |).
Since the number of iterations is less than 3|V | as obtained in (ii) of subsection
3.3, we conclude that the complexity of Algorithm OPT-CELP is O(|V |2).

Theorem 5 Algorithm OPT-CELP solves problem CELP on a tree in O(|V |2)
time.

Remark: We note that OPT-CELP can be used to solve problem (4) to minimize
any convex piecewise linear function. In this case, however, the number of iterations
depends on the number of breaking points of all variables. More precisely if the
numbers of breaking points of all variables are bounded by B, the complexity
becomes O(B|V |2).

5 Concluding Remarks

In this paper, we considered a new type of network upgrading model. The
model divides the communication delay over an edge into three parts; sending time,
receiving time and transmission time. Upgrading a node shortens the sending and
receiving time of this node, with possible different effects on them. We considered
two upgrading strategies; one assumes that the improvement at a node is variable,
while the other assumes that the improvement at a node is fixed. These two
problems are denoted by CELP and DELP respectively. We showed that CELP

Lowering Eccentricity of a Tree by Node-Upgrading 11

can be solved in polynomial time if the underlying graph is a tree. Note that
the eccentricity lowering problems considered in this paper are to minimize the
upgrading cost to reduce the eccentricity by a given amount. There is a related
version of the eccentricity lowering problems, i.e., to minimize the eccentricity with
a given budget. It is straightforward to see that the results in this paper can be
extended to such a version.

References

[1] V. Chepoi, H. Noltemeier, and Y. Vaxès, Upgrading trees under diameter and
budget constraints, Networks 41 (2003), 24-35.

[2] K.U. Drangmeister, S.O. Krumke, M.V. Marathe, N. Noltemeier, and S.S.
Ravi, Modifying edges of a network to obtain short subgraphs, Theoretical
Computer Science 203 (1999), 91-121.

[3] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness, W.H. Freeman and Company, New York, 1979.

[4] T. Ibaraki and N. Katoh, Resource allocation problems: algorithmic ap-
proaches, The MIT Press, Cambridge, Massachusetts, 1988.

[5] T. Ibaraki, Y. Vaxès and X. Yang, Lowering eccentricity of a tree by node-
upgrading, Networks, to appear.

[6] S.O. Krumke et al., Approximation algorithms for certain network improve-
ment problems, Journal of Combinatorial Optimization 2 (1998), 257-288.

[7] S.O. Krumke et al., Improving spanning trees by upgrading nodes, Theoretical
Computer Science 221 (1999), 139-155.

[8] S.O. Krumke et al., Improving minimum cost spanning trees by upgrading
nodes, Journal of Algorithms 33 (1999), 92-111.

[9] S.O. Krumke et al., Upgrading bottleneck constrained forests, Discrete Applied
Mathematics 108 (2001), 129-142.

[10] D. Paik and S. Sahni, Network upgrading problems, Networks 26 (1995), 45-58.

[11] J.Z. Zhang, X.G. Yang, and M.C. Cai, Inapproximability and a polynomially
solvable special case of a network improvement problem, European Journal of
Operational Research 155 (2004), 251-257.

[12] J.Z. Zhang, X.G. Yang, and M.C. Cai, A network improvement problem under
different norms, Computational Optimization and Applications 27 (2004), 305-
319.

12 International Symposium on OR and Its Applications 2005

