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Abstract We introduce a multistart local search-based method with a taboo step for solving con-
tinuous global optimization problems with bound constraints. Since this algorithm has a character-
istic taboo step[5, 1995] by removing candidate points that converge to the current local optimum
in each iteration, the step enables us to avoid repeated convergence to one of an already known
optima in a local search. Since a similar step has been proposed by Ursem[13, 1999], known as the
hill-valley step, we show the difference between the hill-valley step and the taboo step. Finally, we
show that the algorithm stops after a finite number of iterations and finds the global optimum under
certain conditions.
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1 Introduction
Finding a global minimum x∗∗ = argminx∈Dn f (x) : R→ Rn with bound constraints

Dn = {x = (x1,x2, . . . ,xn) ∈ Rn |Li ≤ xi ≤ Ui}, is a very well-known global optimiza-
tion problem, and many methods have been proposed for solving such a problem with
multimodal function f . Those methods are mainly classified into methods using the de-
terministic approach and methods using the stochastic approach.

Methods using the deterministic approach, such as branch and bound methods[4],
find solutions in reduced regions by repeatedly dividing a given region into sub-regions
using the Lipschitz constant or interval analysis, and these methods guarantee to deter-
ministically find the global optimum with a given tolerance. However, in these methods,
realization of the algorithms are complicated and computational time complexity often
exponentially increases with an increased number of variables.

In the stochastic approach[2][9] which includes heuristic methods[3], multistart meth-
ods[10] that combine multiple sample points, selected candidates for optimal points and
a local optimizer have been proposed. These methods, such as the multistart method and
the clustering methods [2][11][7][8][12], can find the global optimum with a high degree
of accuracy and with no special structure and simple feasible regions. Most of these
algorithms can be summarized in the following general form:

SL1. Take sample points over the searching region Dn.
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SL2. Select (and concentrate) candidates from sampled points according to a certain cri-
terion.

SL3. Apply the local optimizer for each candidate as a starting point to find the local
optimum.

However, one problem with these methods is that some candidates repeatedly converge
to the same optima that have already been found. In order to avoid this disadvantage, we
introduce the following algorithm to eliminate candidates that are expected to converge in
duplicate on the same optimum[5].

SLR1. Take sample points over the searching region.
SLR2. Select and concentrate candidates with the lowest function values.
SLR3. Find the local optimum by applying the local optimizer to a starting point that has

the lowest function value among the candidates.
SLR4. Remove candidates that are expected to converge to the current local optimum. If

no other candidates remain, then terminate, otherwise go to SLR3.

Section 2 shows a global optimization problem and gives notations, definitions and
properties among some definitions. The details of the above main algorithm and termi-
nation property are given in section 3. In section 4, a taboo step that is characterized
by SLR4 is described. In section 5, convergence properties of the main algorithm are
discussed. Finally, concluding remarks and discussion are presented.

2 Preliminaries
2.1 Global optimization problem

In this paper, we deal with the following global optimization problem(P):




minimize f (x)≡ f (x1,x2, . . . ,xn) ,
subject to Li ≤ xi ≤Ui , i = 1,2, . . . ,n ,

Dn = {x ∈ Rn |Li ≤ xi ≤Ui, i = 1,2, . . . ,n},
(P)

where Dn is a searching region of such that the region consists of the closed intervals by
lower and upper bounds on each variable, and sample points are taken over the region Dn.
We assume that the objective function f (x) has a finite number of isolated local minima
x∗k ∈ Dn (k = 1,2, . . . ,M). The set X∗ of the isolated local minima and the set F∗ of its
minimal values are written by :

X∗ = { x∗1,x
∗
2, . . . ,x

∗
M } , (1)

F∗ = { f (x∗1), f (x∗2), . . . , f (x∗M)} . (2)

For simplifying the later description, suppose the function has the unique global minimum
x∗∗ and its function value f ∗∗.

2.2 Notation and definitions
First, we show the notations and definitions.

Notation 1.
Given a set A consisting of finite elements, the j-th element and the size of A are denoted
by A j and |A|, respectively.
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Notation 2.
An algorithm is expressed by using the following notation:

(r1,r2, . . . ,rq) ←algo_name(a1,a2, . . . ,ap).

This notation means that the algorithm algo_name with input p-arguments (a1,a2, . . . ,
ap) is applied, and then results (r1,r2, . . . ,rq) are obtained. Moreover, {∗ descriptions ∗}
in algorithms denotes comments.

Definition 1.
Let the level set L(α) and the strict level set Ls(α) with function level α of the problem
(P) such that

L(α) = { x ∈ Dn | f (x)≤ α, α ∈ R} . (3)
Ls(α) = { x ∈ Dn | f (x) < α, α ∈ R} . (4)

Let the connected components of L(α) and Ls(α) that include x ∈ Dn be Lc(α;x) and
Ls

c(α;x), respectively. Then we call the sets the connected level set and the connected
strict level set[6], respectively. Let sets L1

c(α),L2
c(α), . . . ,Lm

c (α) that are satisfied the
equations {

L(α) = L1
c(α)∪L2

c(α)∪ . . .∪Lm
c (α),

∀i,∀ j (i ̸= j) ∈ {1,2, . . . ,m}, Li
c(α)∩L j

c(α) = /0
(5)

be connected components of level set L(α).

Figure.1 A level set L(α), two connected level sets Lc(α;x1) and Lc(α;x2) have distance
d(x1,x2,α) between two connected level sets.

Since the searching region Dn is a bounded set, all of these connected components are
bounded.

Definition 2.
The distance between two compact sets A and B is defined by

d(A,B) = min{∥x− y∥|x ∈ A, y ∈ B}. (6)
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Typical examples of a level set, a connected level set of a function defined on D2 and
distance between two connected level sets are illustrated in Figure 1.

Definition 3.
We define the strongly quasi-convex region Ls

qc(α∗;x∗) at a local minimum x∗ ∈ X∗ as
the largest connected strong level set satisfying the condition of a strongly quasi-convex
function[1] as follows:





Ls
qc(α∗;x∗) = {x |x ∈ Ls

c(α∗;x∗)},
α∗ = max{ α | f ((1−λ )x1 +λx2) < max{ f (x1), f (x2)}

0 < ∀λ < 1, ∀x1 ̸=∀x2 ∈ Ls
c(α ;x∗) } .

(7)

Definition 4.
Let the n-dimensional maximal open ball B(r∗i ;x∗i ) centered at local minimum x∗i with
maximal radius r∗i such that the ball is included in the strongly quasi-convex region be

{
r∗i = max{ r |B(r;x∗i )⊂ Ls

qc(α∗i ;x∗i )}
B(r;x∗i ) = { x | ∥x− x∗i ∥< r } . (8)

Moreover, the maximum radius r∗∗ of all open balls is defined as follows:

r∗∗ = min
i∈[1,M]

r∗i . (9)

Figure 2 shows an example of two strongly quasi-convex regions Ls
qc(α∗1;x∗1) and

Ls
qc(α∗2;x∗2) and two open balls B(r∗1;x∗1) and B(r∗2;x∗2) defined on D2.

Figure.2 Two strongly convex re-
gions Ls

qc(α∗1;x∗1) and Ls
qc(α∗2;x∗2) and

the open balls B(r∗1;x∗1) and B(r∗2;x∗2).

Ą@

Figure.3 Two line monotone decreasing
regions Md(x∗1) to the local minimum x∗1
and another line monotone decreasing re-
gion Md(x∗2) to the local minimum and x∗2.

Definition 5.
If the set Md(x∗) in which the function value f (x) is monotonic decreases to the local
minimum x∗ along the line-segment [x,x∗] such that





Md(x∗) = { x ∈ Dn | f (x1)≥ f (x2) ,
x1 = (1−θ1)x+θ1x∗, x2 = (1−θ2)x+θ2x∗,
0≤ ∀θ1 < ∀θ2 ≤ 1},

(10)
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then we call the region Md(x∗) the line monotone decreasing region to the local minimum
x∗.

Figure 3 shows an example of the line monotone decreasing region Md(x∗1) and an-
other line monotonic decreasing region Md(x∗2). From Figure 3, note that two sets are
not disjoint sets in general.

Definition 6.
The region of attraction A(x∗) of a local minimum x∗ is the set of starting points such
that strictly descent local minimal procedure:Lomin(xs, fs, f ,Dn,ε f ,εx) of which input
parameters are the starting point xs, its function value fs, an objective function f , search-
ing region Dn and tolerances of f ε f and of x εx are applied, and then converge to the
local minimum x∗ as follows:

A(x∗) = { xs ∈ Dn | Lomin(xs, fs, f ,Dn,ε f ,εx)→x∗, x∗ ∈ Dn } . (11)

Moreover, we define an adjoining relationship between two connected level sets.

Definition 7.
Let a level set L(α) consist of connected components L1

c(α), L2
c(α), . . . Lm

c (α). Moreover,
if there exist two connected components Lk1

c (α) and Lk2
c (α) (k1 ̸= k2) and there exist

two points such that x1 ∈ Lk1
c (α) and x2 ∈ Lk2

c (α), then ∀λ ∈ [0,1] and the point x =
(1−λ )x1 +λx2 on the line segment between x1 and x2 is satisfied as follows:

x ∈ Lk1
c (α)∪Lk2

c (α)∪ (Dn \L(α)), x ̸∈ L(α)\ (Lk1
c (α)∪Lk2

c (α)). (12)

In case where, we call these two connected level set Lk1
c (α) and Lk2

c (α) are adjoint on the
line segment [x1,x2].

2.3 Relationships among three definitions of regions around each lo-
cal minimum

Relationships among regions that have been defined in section 2.2. are described.

Proposition 1. If x ∈ Ls
qc(α∗;x∗) and x∗ ∈ X∗, then x ∈ Md(x∗) (that is, the function

value decreases with approach to the local minimum x∗ on the line segment [x, x∗] ).

Proof ) From Definition 2 of a strongly quasi-convex region, for all x(̸= x∗)∈Ls
qc(α∗;x∗),

we have {
x1 = (1−θ1)x+θ1x∗ , 0 < ∀θ1 < 1 ,
f (x1) < max{ f (x), f (x∗)}= f (x). (13)

Since Ls
qc(α∗;x∗) is a convex set, x1 ∈ Ls

qc(α∗;x∗). Therefore,

{
x2 = (1−θ)x1 +θx∗ , 0 < ∀θ < 1 ,
f (x2) < max{ f (x1), f (x∗)}= f (x1).

(14)

Let
θ2 = (1−θ)θ1 +θ > θ1. (15)
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Then we obtain the following equation by substituting equation (13) for x1 of into equation
(14)

x2 = (1−θ)x1 +θx∗

= (1−θ){(1−θ1)x+θ1x∗}+θx∗

= (1−θ)(1−θ1)x+{(1−θ)θ1 +θ}x∗
= (1−θ2)x+θ2x∗ , 0 < ∀θ1 < ∀θ2 < 1 . (16)

From equations (13) to (16), for all x(̸= x∗) ∈ Ls
qc(α∗;x∗), we have





f (x1) > f (x2) ,
where x1 = (1−θ1)x+θ1x∗, x2 = (1−θ2)x+θ2x∗,

0 < ∀θ1 < ∀θ2 < 1 .
(17)

The above condition is included in definition (10) of the line monotone decreasing region,
and thus x ∈Md(x∗). �

From the above property and equation (10), the following relationship holds:

B(r∗;x∗)⊂ Ls
qc(α∗;x∗)⊂Md(x∗). (18)

3 Main algorithm
3.1 Details of the algorithm

In this section, we show the main algorithm Mg for finding the global minimum x∗∗

and the corresponding function value f ∗∗ for an objective function f over a searching
region Dn. The steps of the algorithm are as follows.

Algorithm Mg ( x∗∗, f ∗∗)←Mg( f , Dn, N, γ, Ns, Nc, h, r∗∗, ε f , εx) ;

{∗ N is the number of samples, γ is ratio of random sampling, Ns(< N) is the number
of selecting candidates, Nc(< Ns) is the number of concentrating candidates, h > 0 is
the step size, r∗∗ is the radius of open ball, εx is tolerance for x-coordinates, and ε f is
tolerance for the function value. ∗}

M1. [ Initialize ]
{∗ Initialize f ∗∗, X∗, F∗, the set of candidate X (0), F(0), and iteration counter k. ∗}
(S3.1) X∗← /0 ; F∗← /0 ; f ∗∗←∞ ; X (0)← /0 ; F(0)← /0 ; k←0 .

M2. [ Take sample points ]
{∗ Sample uniformly N-points by applying procedure U_Samples, obtain the set
of sample points X (0) = {x1,x2, . . . , xN } and set of these function values F(0) =
{ f (x1), f (x2), . . . , f (xN)}. ∗}
(S3.2) (X (0), F(0))←U_Samples( f , Dn, N, γ);

M3. [ Select candidates ]
{∗ Sort sample points ascent order with respect to function values and select Ns-
candidates with smallest function values in the sets X (0), F(0). ∗}
(S3.3) X (1) = {xi ∈ X (0) | f (x1)≤ ·· · ≤ f (xi)≤ ·· · ≤ f (xNs)} ;

F(1) = { f (xi) ∈ F(0) | f (x1)≤ ·· · ≤ f (xi)≤ ·· · ≤ f (xNs) } .
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M4. [ Concentrate candidates by line search]
{∗ Concentrate Nc-candidates X (1)

i , (i = Ns−Nc + 1,Ns−Nc + 2, . . . ,Ns) with
Nc-largest function values around local minima using line search along steepest
descent direction −∇ f (X (1)

i ). ∗}
(S3.4) for i←Ns−Nc+1 to Ns do

X (1)
i ← argmin

λ
{ f (X (1)

i +λ (−∇ f (X (1)
i ))} ;

F(1)
i ← min

λ
{ f (X (1)

i +λ (−∇ f (X (1)
i ))} ;

od .
M5. [ Apply local search procedure ]

{∗ Increment iteration counter k by one, and set xs, fs as the smallest function value
in the set F(k). ∗}
(S3.5) k←k +1 .
(S3.6) xs← argmin{ f (xi) ∈ F(k) } ; fs←min{ f (xi) ∈ F(k) } .
{∗ Find the local minimum x∗ and the local minimal value f ∗ by applying the local
search procedure Lomin from a starting point xs. ∗}
(S3.7) (x∗, f ∗)←Lomin(xs, fs, f ,Dn,ε f ,εx) .

{∗ Remove starting point xs and its function value fs from the sets X (k) and F(k).
∗}
(S3.8) X (k+1)←X (k)−{xs} ; F(k+1)←F(k)−{ fs} .

M6. [ Check whether the current local minimum was firstly found ]
{∗ Check the current local minimum x∗ can be the same within the tolerance εx as
one in the set of local minima X∗(k) (isol= f alse ) or not (isol = true). ∗}
(S3.9) isol = true ;

for i←1 to |X∗| do
if ∥x∗−X∗i ∥> εx then isol = f alse ; break ; fi .

od .
{∗ If the local minimum x∗ is firstly found (isol = true), then add the point x∗ and
it’s function value f ∗ to the related two sets X∗ and F∗. If the set of candidates
X (k+1) is empty set, then terminate the algorithm. If the local minimum has been
already found, then go to step M5 ∗}
(S3.10) if isol = true then

X∗←X∗+{x∗} ; F∗←F∗+{ f ∗} ;
if f ∗ > f ∗∗ then x∗∗←x∗ ; fi ;

fi .
(S3.11) if X (k+1) = /0 then return .
(S3.12) if isol = f alse then goto M5.

M7. [ Reduce candidates ]
{∗ Remove candidates from X (k+1) that are expected to converge to the current local
minimum x∗ by applying procedure Rc. ∗}
(S3.13) (X (k+1), F(k+1))← Rc(X (k+1), F(k+1), x∗, f ∗, h, r∗∗) .
{∗ If the set of candidate points is an empty set, then stop the algorithm. Otherwise,
go to M5. ∗}
(S3.14) if X (k+1) = /0 then return .
(S3.15) else X (k)←X (k+1) ; F(k)←F(k+1) ; goto M5 .
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3.2 Termination property
Firstly, we show following the termination property of the algorithm Mg.

Proposition 2. The algorithm Mg always stops at a finite number of iterations k ≤ Ns.

Proof) The step (S3.8) is always executed at every iteration k and the step (S3.13) is
executed in the case where isol = true. |X (k+1) | = |X (k) | − 1 holds at (S3.8) and the
number of obtained candidates |X (k+1) | by the algorithm Rc is smaller than or equal to
|X (k+1) | at step (S3.8). Therefore, |X (k+1) | ≤ |X (k) |−1 is satisfied for every iteration.

Since the initial number of elements of the candidates set |X (1) | is Ns, there exists
some values of k such that k ≤ Ns and X (k) = /0. Thus, from the stop condition, the
algorithm Mg terminates at a finite number of iterations. �

4 Taboo step for avoiding multiple convergence to one of
already known local optima

In this section, we introduce the taboo step M7 of our algorithm [5, 1995] that reduces
the candidate points, and we show the differences between Ursem’s [13, 1999] hill-valley
step and our taboo step.

4.1 Details of the taboo step for reducing candidates
At step M7 of the main algorithm in section 3, the number of candidates is reduced.

This step plays an important role in that it removes candidates that can converge to the
current local minimum. By this step, the point with the smallest function value in remain-
ing candidates becomes an effective starting point for the local search procedure Lomin in
the next iteration. If the main algorithm does not use this step, e.g., the multistart method,
the algorithm becomes very inefficient, since many of the starting points for the local
search converge to one of the already found local minima.

The algorithm Rc removes the j-th point X (k)
j from the set X (k+1) such that the

function f can monotonically decrease to the open ball B(r∗∗;x∗) along the line segment
[X (k+1)

j , x∗ ]. As a result, the set of candidates X (k+1) and the set of function values F(k+1)

are obtained. The steps of the algorithm are as follows:

Algorithm Rc (F(k+1), X (k+1) )←Rc(F(k+1), X (k+1), x∗, f ∗, h, r∗∗ ) ;

R1. [ Loop for reducing candidates ]
(S4.1) for j←1 to |X (k+1) | do

R2. [ Check the function monotonic decrease with approaching the open ball. ]
(S4.2) {∗ Check whether the function f monotonic decrease with approaching the
open ball B(r∗∗,x∗) on the line segment [X (k+1)

j ,x∗](m_decrs = true) or not(m_decrs =

f alse) . ∗}
(S4.2.1) f (0)←F(k+1)

j ; x(0)←X (k+1)
j ;
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(S4.2.2) e←(x∗− x(0))/∥x∗− x(0)∥ ;
(S4.2.3) m_decrs← true ; i←1;
(S4.2.4) while x(i−1) ̸∈ B(r∗∗,x∗) and ih/∥x∗− x(0)∥ ≤ 1 do
(S4.2.5) x(i)←x(0) + ihe ; f (i)← f (x(i)) ;
(S4.2.6) if f (i) ≤ f (i−1) then i← i+1;
(S4.2.7) else m_decrs← f alse ; break ; fi .

od .
R3. [ Remove the candidate such that m_decrs = true . ]

(S4.3) {∗ If m_decrs = true, then remove the candidate X (k+1)
j and it’s function

value F(k+1)
j from X (k+1) and F(k+1). ∗}

(S4.3.1) if m_decrs = true then
(S4.3.2) X (k+1)←X (k+1)−{X (k+1)

j } ; F(k+1)← F(k+1)−{F(k+1)
j } ; fi .

od .

The actions of the algorithm Rc are shown in Figure 4.1 and Figure 5.

•: a remaining candidate
×: a removing candidate

Figure.4 Algorithm Rc being operated

•: a remained candidate

Figure.5 Algorithm Rc is finished

Proposition 1.
If there exist j1 such that X (k+1)

j1 ∈Md(x∗) ∪ B(r∗∗,x∗), then m_decrs = true at step
(S4.3.1).

Proof ) In the case where x(0) ≡ X (k+1)
j1 ∈ B(r∗∗,x∗), then m_decrs = true at step (S4.3)

from steps (S4.2.3) and (S4.2.4). In the case where x(0) ≡ X (k+1)
j1 ̸∈ B(r∗∗,x∗), for x(i−1)

330 The 10th International Symposium on Operations Research and Its Applications



such that x(i−1) ̸∈ B(r∗∗,x∗), from step (S4.2.5), the equations:

x(i−1) = x(0) +(i−1)he

= x(0) +(i−1)h
x∗− x(0)

∥x∗− x(0)∥

=

(
1− (i−1)h
∥x∗− x(0)∥

)
x(0) +

(i−1)h
∥x∗− x(0)∥x∗ (19)

x(i) = x(0) + ihe

= x(0) + ih
x∗− x(0)

∥x∗− x(0)∥

=

(
1− ih
∥x∗− x(0)∥

)
x(0) +

ih
∥x∗− x(0)∥x∗ (20)

hold. Here, let θ1 ≡ (i−1)h/∥x∗− x(0)∥ and θ2 ≡ ih/∥x∗− x(0)∥, i≥ 1 by steps (S4.2.3)
and (S4.2.6) and ih/∥x∗− x(0)∥ ≤ 1 at step (S4.2.4), thus 0 ≤ θ1 < θ2 ≤ 1. Since x(0) ∈
Md(x∗), f (x(i−1)) < f (x(i)) by Definition 5, that is, f (i) < f (i−1), step (S4.2.5) is always
executed. Therefore, m_decrs = true. �

From this proposition, if m_decrs = true, then (S4.3.2) is executed and X (k+1)
j1 ̸∈

X (k+1) at the end of (S4.3).

Proposition 2.
If there exist j2 and connected components L1

c(F
(k+1)
j2 ), L2

c(F
(k+1)
j2 ), . . . ,Ll

c(F
(k+1)
j2 )(

= Lc(F
(k+1)
j2 ;x∗)

)
, . . . ,Lm

c (F(k+1)
j2 ) of L(F(k+1)

j2 ) such that




d
(

Lc(F
(k+1)
j2 ;x∗), Ll

c(F
(k+1)
j2 )

)
> h, (l ̸= l, l = 1, . . . ,m),

d
(

B(r∗∗;x∗), Ll
c(F

(k+1)
j2 )

)
> h, (l ̸= l, l = 1, . . . ,m),

(21)

then m_decrs = f alse at step (S4.3.1) of Algorithm Rc.

Proof ) At step (S4.2.1), we set x(0) ≡ X (k+1)
j2 and f (0) ≡ F(k+1)

j2 . Then L( f (0)) can be
represented by m-number of connected components as follows:

L( f (0)) = L1
c( f (0))∪L2

c( f (0))∪·· ·∪Lm
c ( f (0)). (22)

If m_decrs = true, then

x(i) ∈ L( f (0)) = L1
c( f (0))∪L2

c( f (0))∪·· ·∪Lm
c ( f (0)) , (i = 0,1, . . .) (23)

because f (0) ≥ f (1) ≥ f (2) ≥ ·· · while the condition of step (S4.2.5) is true. Let a point
that is included in Lc( f (0);x∗) or B(r∗∗,x∗) with smallest i be x(l), then x(l) ∈ Lc( f (0);x∗)
or x(l) ∈ B(r∗∗,x∗), and x(l−1) ̸∈ Lc( f (0);x∗) or x(l−1) ̸∈ B(r∗∗,x∗). Moreover, there exist
Ll3

c ( f (0)) such that x(l−1) ∈ Ll3
c ( f (0)) and Ll3

c ( f (0))⊂ L( f (0))\Lc( f (0);x∗) or Ll3
c ( f (0))⊂

L( f (0))\B(r∗∗,x∗). From ∥x(l)− x(l−1)∥= h,




d
(

Lc( f (0);x∗),Ll3
c ( f (0))

)
≤ h or

d
(

B(r∗∗,x∗),Ll3
c ( f (0))

)
≤ h

(24)
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holds, and this contradicts equation (22). Thus, m_decrs = f alse. �
From this proposition, if m_decrs = f alse, then no (S4.3.2) is executed and X (k+1)

j1 ∈
X (k+1) at end of (S4.3).

4.2 Differences between Ursem’s hill-valley step and our taboo step
Ursem’s hill-valley step and our taboo step are the same for searching on a line seg-

ment consisting of two different points.
However, our step is different from Ursem’s step as follows.

(1). Ursem’s step allows all two different point in population, but one of the two points
is always a local optimum x∗.

(2). Step h and inner point x is determined the base ratio γ = 0.25 of distance between
two different points xi and x j as follows

{
h = γ∥xi− x j∥, 1≤ i, j(i ̸= j)≤ Np
x = xi + k ·h(xi− x j), γ = 0.25, k = 1,2,3,

(25)

but our step length h is always constant.

From the above two different matters and section 4.2, the convergence property cannot
hold at Ursem’s step.

5 Conditions for finding the global minimum
We show the conditions for finding the global minimum.

Theorem 1.
If in the main algorithm Mg , the following two conditions are satisfied, then the global

minimum x∗∗ can always be found without duplication.
(C1) There exists i1 such that X (1)

i1 = argmin{ f (x) |xi ∈ Lc(F
(1)
Ns

;x∗∗) ⊂Md(x∗)} at step
(S3.5) .
(C2) There exists an iteration k1, and the following sub-conditions hold.
(C2-1) For all k < k1 at (S3.13), The conditions of Proposition 2 hold at point X (1)

i1 and

its function value F(1)
i1 in procedure Rc . That is, there exists j2 such that X (k+1)

j2 =

X (1)
i1 and F(k+1)

j2 = F(1)
i1 , and there exists connected components L1

c(F
(k+1)
j2 ), L2

c(F
(k+1)
j2 ),

. . . ,Ll
c(F

(k+1)
j2 )(

= Lc(F
(k+1)
j2 ;x∗)

)
, . . . ,Lm

c (F(k+1)
j2 ) of L(F(k+1)

j2 ) such that





d
(

Lc(F
(k+1)
j2 ;x∗), Ll

c(F
(k+1)
j2 )

)
> h, (l ̸= l, l = 1, . . . ,m),

d
(

B(r∗∗;x∗), Ll
c(F

(k+1)
j2 )

)
> h, (l ̸= l, l = 1, . . . ,m).

(26)

(C2-2) If there exists X (1)
i1 in the iteration k1, then X (1)

i1 = xs = argmin{ f (xi) ∈
F(k1) }, F(1)

i1 = fs = min{ f (xi) ∈ F(k1) } holds at (S3.6) of Step M5. Moreover, if
(x∗, f ∗)←Lomin(xs, fs, f ,Dn,ε f ,εx), then x∗ = x∗∗ at (S3.7).
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Proof ) If sub-condition (C2-1) holds, then m_decrs = f alse from Proposition 2. Thus,
in iteration 1 to k1− 1, X (k+1)

j2 = X (1)
i1 ∈ X (k+1) at the end of (S4.3), that is, the end of

Rc . Then, at (S3.4) in the next iteration k1, if the sub-condition (C2-2) holds, the global
minimum x∗∗ can be found. �
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