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Abstract In this paper, we address the scheduling model with discretely compressible release
dates, where processing any job with a compressed release date incurs a corresponding compression
cost. We consider the following problem: scheduling with discretely compressible release dates to
minimize the sum of makespan plus total compression cost. We show its NP-hardness, and design
an approximation algorithm with worst-case performance ratio 2.
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1 Introduction
In this paper, we study the scheduling problem with discretely compressible release

dates. In the classical scheduling, it is always assumed that the parameters of a job,
say its processing time, its release date etc. are all fixed. However, in the real world,
the processing of jobs is not only determined by the machine speed, but also by other
resources such as labor, funds etc., therefore the parameters of a job may not be fixed. For
example, we can compress the original release dates. Of course, processing any job with
a compressed release date incurs a compression cost.

The scheduling problem with compressible release dates has its deep root in the real
world. It commonly arises in manufacturing systems where the preprocessing of the jobs
depends on a common resource such as fuel, catalyzer, raw materials, etc. Real-life exam-
ples of such problems are given in Janiak ([1], [2], [3]) in the context of steel production
which involves preheating of iron ingots ([4]).

Let J = {1,2, · · · ,n} denote a list of given jobs. We write SCR as an abbreviation
of the scheduling problem with compressible release dates. We denote by TRC the total
compression cost in SCR. There are two variants for SCR, the continuous one and the
discrete one, which are denoted by SCCR and SDCR, respectively. In SCCR, any job J j
can be processed with a release date r j ∈ [l j,u j] and a corresponding compression cost
c j(u j− r j) is incurred, where c j is the cost coefficient. And in SDCR, the value of r j can
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be selected from among {r j1,r j2, · · · ,r jk}, and the corresponding compression costs are
e j1,e j2, · · · ,e jk.

There are the following four models for SCR:
(P1) To minimize F1 +F2;
(P2) To minimize F1 subject to F2 ≤ a;
(P3) To minimize F2 subject to F1 ≤ b;
(P4) To identify the set of Pareto-optimal points for (F1,F2).
Where F1 is the original objective function, and F2 is TRC. In the objective function

field of the notation of Graham et al.([5]), we write the above four model as F1 +F2,
F1/F2, F2/F1 and (F1,F2), respectively. We use cr and dr to characterize SCCR and
SDCR, respectively.

Nowicki and Zdrzalka ([6]) showed that the problem 1|r j,cr|Cmax +T RC is strongly
NP-hard and designed an approximation algorithm with worst-case ratio 2 which is the
best possible. Sun ([7]) concentrated on the problems 1|r j, p j = 1,cr|(Cmax,T RC), 1|r j, p j =
1,c j = 1,cr|(Lmax,T RC) and 1|r j, p j = 1,c j = 1,cr|(∑ω jC j,T RC). Sun and R.J.Kibet
([7]) also studied the problem 1|r j, p j = 1,cr|(∑C j,T RC). Cheng and Shakhlevich ([8])
studied the problems 1|r j, p j = 1,cr|Cmax +T RC, 1|r j, p j = 1,cr|Cmax/T RC, 1|r j, p j =
1,cr|T RC/Cmax, and the cases with integer compression amounts for the above three
problems. They also discussed the problems 1|r j, p j = 1,c j = 1,cr|Cmax+T RC, 1|r j, p j =
1,c j = 1,cr|Cmax/T RC and 1|r j, p j = 1,c j = 1,cr|T RC/Cmax. And furthermore, they
showed that 1|r j, p j = 1,cr|∑w jC j +T RC, 1|r j, p j = 1,cr|∑w jC j/T RC and 1|r j, p j =
1,cr|T RC/∑w jC j are all NP-hard in the ordinary sense.

The major work in the area of scheduling with compressible parameters considered
either compressible processing times and fixed release dates ([11,12,14]), or compress-
ible release dates and fixed processing times ([6,7,8,10,15,16]), Cheng, Kovalyov and
Shakhlevich ([13]) examined the problem of optimal scheduling the jobs on a single-
machine when job processing times and release dates are conpressible parameters and the
objective is to minimize the makespan together with the linear compression cost func-
tion. They constructed a reduction to the assignment problem for the case of equal release
date compression costs and develop an O(n2) algorithm for the case of equal release date
compression costs and the equal processing time compression costs.

In this paper, we address the P1 model for SDCR, 1|r j,dr|Cmax +T RC following the
notation of Graham et al. The rest of this paper is organized as follows. Some preliminar-
ies are given in Section 2. In section 3, we show it is strongly NP-hard. In section 4, we
present an approximation algorithm with worst-case ratio 2. Conclusion and remarks are
given in Section 5.

2 Preliminaries
An algorithm A is a ρ-approximation algorithm for a minimization problem if it pro-

duces a solution which is at most ρ times the optimal one, with a running time bounded by
a polynomial in the input size. We also say ρ is the worst-case ratio of algorithm A. The
worst-case ratio is the most frequently used measure for the quality of an approximation
algorithm for a scheduling problem: the smaller the ratio is, the better the approximation
algorithm is.
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In the following, we introduce some basic notations and formulate the problem con-
sidered in this paper. Each job j ∈ J is characterized by a processing time p j, a set of
k (k ≥ 1 and is given) potential release dates: r j1,r j2, · · · ,r jk with r j1 > r j2 > · · · > r jk,
where r j1 is called the normal release date and r jk the minimum possible release date, and
a set of k potential compression costs: e j1,e j2, · · · ,e jk. Whenever r ji, j ∈ J,1 ≤ i ≤ k, is
selected as the actual release date of job j, a corresponding compression cost e ji is paid.
Our work is to select a release date for each job and schedule these jobs such that the ob-
jective value Cmax +T RC is minimized. It is also assumed that 0 = e j1 < e j2 < · · ·< e jk.
This assumption is sound as the more release date we compress the more cost we should
pay.

Let r = (r1,r2, · · · ,rn) be a vector of actual release dates where r j ∈ {r j1,r j2, · · · ,r jk},
and π , a schedule of J defining the job processing order. We denote by R the set of
all feasible actual release dates, R = {r : r j ∈ (r j1,r j2, · · · ,r jk)}, and by Π the set of
all schedules of J. We assume that a pair (r,π) uniquely determines a completion time
C j(r,π) of each job j ∈ J. Two general performance measures are considered in our
problem in this paper. The first one is based on the completion time C j(r,π) and therefore
it will be called a completion cost. Given r and π , the completion cost, which is denoted
by F1(r,π), is the maximum completion time of all the jobs, i.e. F1(r,π) = max{C j(r,π) :
1 ≤ j ≤ n}. The second measure is the total cost of compressions F2(r) = ∑n

j=1 e ji(1 ≤
i ≤ k). F2(r) will be called a compression cost. For a pair (r,π), a total scheduling cost
M(r,π) is defined by M(r,π) = F1(r,π)+F2(r). Denote by rπ( j),σ( j,π) the actual release
date of job j in π , where π( j) is the jth processed job in π and σ( j,π) the index of its
release time, 1 ≤ σ( j,π) ≤ k. The problem considered in this paper is formulated as
follows. Find π∗ ∈Π and r∗ ∈ R minimizing

M(r,π) = max
1≤ j≤n

(rπ( j),σ( j,π)+
n

∑
t= j

pπ(t))+
n

∑
j=1

eπ( j),σ( j,π) (1)

subjectto r ∈ R and π ∈Π.

3 Proof of NP-hardness
Nowicki and Zdrzalka ([6]) showed that the problem 1|r j,cr|Cmax +T RC is strongly

NP-hard by a reduction to the problem 1| |∑ω jTj, which is strongly NP-hard. We remark
that their proof also applies to the special case that all the parameters are nonnegative
integers. Next, we will prove by reduction to this case that 1|r j,dr|Cmax +T RC is also
strongly NP-hard.

Theorem 1. 1|r j,dr|Cmax +T RC is strongly NP-hard.
Proof. For any integral instance of 1|r j,cr|Cmax+T RC, I =(p1, p2, · · · , pn; l1, l2, · · · , ln;

u1,u2, · · · ,un, c1,c2, · · · ,cn), where all the numbers are nonnegative integers, construct an
instance I′ of 1|r j,dr|Cmax +T RC as follows: there are also n jobs in total, for each job j,
1≤ j≤ n, its release time has u j− l j+1 choices, r j1 = u j,r j2 = u j−1, · · · ,r j,u j−l j+1 = l j,
and the corresponding costs are e j1 = 0,e j2 = c j, · · · ,e j,u j−l j+1 = (u j− l j)c j.

Obviously I and I′ have exactly the same optimal objective values as well as the same
optimal schedules. Since the construction can be done in pseudo-polynomial time of the
size of I, the proof is done.
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4 An approximation algorithm
In what follows, we discuss approximation algorithms for our problem. First note that

compressing the release date may decrease the completion times of the jobs but incurs
additional costs, so we here assume without loss of generality that e j2 < r j1− r j2,e j3 <
r j1− r j3, · · · ,e jk < r j1− r jk for any job j ∈ J .

Algorithm G(General approximation algorithm)

Step 1. Choose a schedule πG.
Step 2. Determine rG minimizing M(r,πG) subject to r ∈ R.

Suppose that πG is chosen according to one of the following rules: arbitrary schedule
(G0), nondecreasing r j1 (G1), nondecreasing r jk (G2), nondecreasing r jk +e jk (G3), non-
decreasing r j1+ p j (G4), nondecreasing r jk + p j (G5), nondecreasing r jk +e jk + p j (G6),
nonincreasing p j (G7), nonincreasing r j1 + p j (G8), nondecreasing (r jk + e jk)/p j (G9).
If there is a choice in G1-G3, then take the job with the largest processing time.

For the minimizing problem in Step 2, we design an optimal algorithm OMC. Before
describing it, we state the following lemma which plays an important role in design and
analysis of the algorithm OMC.

Lemma 2. There always exists an optimal schedule with the following properties:
(1)There is no idle time between adjacent jobs.
(2)There exists at least one job whose release time is exactly its start time (we call this job
critical job).

Proof sketch. If there exists some idle time between two adjacent blocks, here block
means a largest possible set of jobs in the optimal schedule with the property that the com-
pletion time of the former job is just the start time of the latter one, we can just postpone
the start time of the former block such that its completion time is exactly the start time
of the latter block, and so that there is no idle time between these two blocks. Obviously
this will not change the objective function value, thus property (1) holds. Property (2) is
straightforward.

Obviously, after determining the critical job and its release date, we can easily calcu-
late the objective value of the schedule with no idle time between adjacent jobs, which
is also the main idea of our optimal algorithm. To simplify our discussion, we may as-
sume without loss of generality that the jobs are re-indexed so that πG = (1,2, · · · ,n)
after choosing πG in Step 1. Suppose job J j0 is the critical job we determine, and its
actual release date is denoted by r j0i0 .

For 1≤ x < j0, we define

r( j0, i0,x) = max{rxi : 1≤ i≤ k,rxi ≤ r j0,i0 −
j0−1
∑

t=x
pt}

For j0 < y≤ n, we define

R( j0, i0,y) = max{ryi : 1≤ i≤ k,ryi ≤ r j0,i0 +
y−1
∑

t= j0
pt}
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Denote c( j0, i0,x) and c( j0, i0,y) as the corresponding indexes of release dates, namely
r( j0, i0,x) = rx,c( j0,i0,x), R( j0, i0,y) = ry,c( j0,i0,y).

Algorithm OMC(Optimal minimum cost)

Input an instance J .
Let H j0 := ∞, B j0 := ∞
For j0 = 1 to n do

For i0 = 1 to k do
Calculate c( j0, i0,1), · · · , c( j0, i0, j0−1), c( j0, i0, j0 +1), · · · , c( j0, i0,n)

If all c( j0, i0,h)(h ∈ [1, j0−1]∪ [ j0 +1,n]) exist then let

H j0 := min{H j0 ,
j0−1
∑

x=1
ex,c( j0,i0,x)},

B j0 := min{B j0 ,r j0i0 +
n
∑

t= j0
pt + e j0 +

n
∑

y= j0+1
ey,c( j0,i0,y)}

EndFor
EndFor
Output min{Hi +Bi : 1≤ i≤ nk} and the corresponding schedule.

It’s not hard to calculate that the running time is O(n2k).

In what follows we show results of the worst-case analysis for various variants of
Algorithm G, obtained from the general scheme by applying various rules for choosing
πG in Step 1. The rules G3, G6, G9 are justified by the following lower bound. By (1),
we get

M(r∗,π∗)≥min
π∈Π

max
1≤ j≤n

{ min
1≤σ( j)≤k

(r j,σ( j)+
n
∑

t= j
pt +

n
∑
j=1

e j,σ( j))}

≥min
π∈Π

max
1≤ j≤n

(r jk + e jk +
n
∑

t= j
pt)

Thus we can get the lower bound on M∗ by scheduling the jobs in the order of nonde-
creasing r

′
jk = r jk + e jk, in the classical problem 1|r′jk|Cmax.

Theorem 3. The worst-case ratio of Algorithm G is 2.

Proof. Denote Cmax(r,π) = max
1≤ j≤n

(r j,σ( j) +
n
∑

t= j
pt). Let π̃(r) be a schedule mini-

mizing Cmax(r,π) over π ∈ Π. For any π ∈ Π, Cmax(r,π) ≤ max
1≤ j≤n

r j,σ( j) +
n
∑
j=1

p j, and

Cmax(r, π̃(r))≥ max
1≤ j≤n

r j,σ( j), and Cmax(r, π̃(r))≥
n
∑
j=1

p j. We have the following observa-

tion, i.e., for any π ∈Π,
Cmax(r,π)≤ 2Cmax(r, π̃(r)) (2)
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Since M(r∗,π∗) = M(r∗, π̃(r∗)), we thus get from (2) that

MG ≤M(r∗,πG) =Cmax(r∗,πG)+
n
∑
j=1

e∗j,σ( j)

≤ 2Cmax(r∗, π̃(r∗))+
n
∑
j=1

e∗j,σ( j)

≤ 2M(r∗,π∗) = 2M∗

5 Conclusion and remarks
In this paper, we have discussed the scheduling problem with discretely compressible

release times. This model is of interest both in the real world and in the sense of theory and
it has attracted relatively little attention compared with traditional scheduling problems.
We address the P1 model for scheduling with discretely compressible release times to
minimize makespan. We show that it is strongly NP-hard, and present an approximation
algorithm with worst-case ratio 2.
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