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Abstract In this paper, portfolio selection in crisp and fuzzy cases is studied respectively, and cor-
responding model and algorithms in both case are proposed. In two models, the risk is taken as the
sum of the absolute deviation of the risky assets in stead of covariance, the transaction cost is taken
as v-shaped function of the difference between the existing and new portfolio. An efficient way is
given to transform an optimal problem with non-linear objective function or non-linear constraint
into a linear problem, which alleviate the computational difficulty greatly. The investor’s subjective
impact is reflected in the model of the fuzzy decision-making environment. Comparison and anal-
ysis of the two models is given via a numerical example which has been used in Markowitz’s paper
[2].
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1 Introduction
Fluctuation in stock market is unpredictable and it is random in nature. This is a diffi-

cult task to achieve without planing and evaluating investment alternatives. The portfolio
must incorporate what the investor believes to be an acceptable balance between risk and
reward. Markowitz’s mean-variance model of portfolio selection [1, 2] is one of the best
known models in finance and unanimously recognized to contribute in the development of
modern portfolio theory. It explores how risk-averse investors can construct optimal port-
folio assets taking into consideration the trade-off between expected returns and market
risk.

Portfolio selection issue continuously gaining an interest among scholars[3, 4, 14, 11].
Since the computational difficulty of covariance, Markowitz idea on the mean-variance
approach then being expended by many researchers such as Sharpe, Mossin, and Lint-
ner. The modern portfolio theory then evolved to Capital Asset Pricing Theory[13] when
risk free rate asset was included into the portfolio and then evolved to Arbitrage Pric-
ing Theory in which the computation was largely reduced. Konno&Yamazaki proposed
absolutely mean-variance deviation as risk function from another perspective to reduce
the model and got efficient result[3]. Furthermore, the Markowitz model is too basic from
practical point of view and ignores many constraints faced by real-world investors: trading
limitations, size of portfolio, transaction costs, etc[4, 5, 12, 10]. Investment strategies may
be theoretically very profitable before taking into account transaction costs and taxation
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issue, but the situation can become worse (such as inefficient portfolio) and completely
different when these last constraints are incorporated. Any realistic investment portfolio
selection must support transaction costs among other practical limitations.

Several papers dealt with the problem using both quantitative and qualitative analysis
methods. One of the hot research topics in this area is the use of fuzzy set theory. Fuzzy set
theory[6] is a powerful tool used to describe an uncertain environment with vagueness,
ambiguity or some other type of fuzziness, which appears in many aspects of financial
markets. Studies by Tanaka et. al. [8],[9],[7], Wang et al. [15], Bilbao-Terol et al. [16],
Vercher et al. [17], Lin & Liu, [18] and Li & Xu, [19] show that the fuzzy approach also
applicable in portfolio selection.

In order to be easily application, this paper managed to propose a model in which con-
sidering transaction cost for avoiding inefficient portfolio firstly, using absolute deviation
instead of variance secondly and lastly formulating the nonlinear programming to linear
programming.

2 Portfolio selection model under crisp case
Suppose that an investor chooses xi, the proportion invested in asset i, 1 ≤ i ≤ n for

n assets. The constraints are
n
∑

i=1
xi = 1 and xi ≥ 0, i = 1,2, · · ·n. The return Ri for the

ith asset, 1 ≤ i ≤ n, is a random variable, with expected return ri = E(Ri). Let R =
(R1,R2, · · · ,Rn)

T ,x=(x1,x2, · · · ,xn)
T and r =(r1,r2, · · · ,rn)

T . In this paper the transition
cost for the ith asset ci employs v-shape function, that is

ci = ki|xi− x0
i |, i = 1,2, · · · ,n (1)

where x = (x0
1,x

0
2, · · · ,x0

n)
T is a given assets and ki ≥ 0 the transition cost for the unit of

ith asset.
So the total transition cost is described

n

∑
i=1

ci =
n

∑
i=1

ki|xi− x0
i | (2)

and the total return is

R(x) = E

[
n

∑
i=1

Rixi

]
−

n

∑
i=1

ki|xi− x0
i |=

n

∑
i=1

rixi−
n

∑
i=1

ki|xi− x0
i | (3)

thus the total risk can be given as follow:

V (x) =
n

∑
i=1

E|(Ri−E(Ri))xi|=
n

∑
i=1

dixi (4)

where di = E|(Ri−E(Ri))xi|.
In general, investors expect maximizing returns and minimizing risk at the meantime.
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It can be formulated mathematically as two-objective Programming Model

max R(x) =
n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |

min V (x) =
n
∑

i=1
dixi

s.t.
n
∑

i=1
xi = 1,xi ≥ 0, i = 1, · · · ,n

(5)

Weighted sum approach to simplify the multi-objective problems, we get the following
parametric programming

max (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |
)
−λ

n
∑

i=1
dixi

s.t.





n
∑

i=1
xi = 1

xi ≥ 0, i = 1, · · · ,n

(6)

where λ ∈ [0,1] is called risk-aversion factor. The greater value λ is, the more awareness
of risk aversion.

Theorem 1. x∗ = (x∗1,x
∗
2, · · · ,x∗n) is an optimal solution of the model (6) if and only if

there exist (y∗1,y
∗
2, · · · ,y∗n) such that (x∗1,x

∗
2, · · · ,x∗n;y∗1,y

∗
2, · · · ,y∗n) is an optimal solution of

the following programming:

max (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
kiyi

)
−λ

n
∑

i=1
dixi

s.t.





yi + xi− x0
i ≥ 0

yi− xi + x0
i ≥ 0

n
∑

i=1
xi = 1

xi ≥ 0, i = 1, · · · ,n

(7)

Proof. Suppose that x∗ = (x∗1,x
∗
2, · · · ,x∗n) is an optimal solution of the model (6), let y∗i =

|x∗i − x0
i |. It is obvious that (x∗1,x

∗
2, · · · ,x∗n;y∗1,y

∗
2, · · · ,y∗n) is a feasible solution of (7). It

need prove that (x∗1,x
∗
2, · · · ,x∗n;y∗1,y

∗
2, · · · ,y∗n) is an optimal solution of (7).

Let x=(x1,x2, · · · ,xn;y1,y2, · · · ,yn) is any feasible solution of (7), then x=(x1,x2, · · · ,xn)
is a feasible solution of (6). Since x∗ = (x∗1,x

∗
2, · · · ,x∗n) is an optimal solution of the model

(6), we have

(1−λ )
(

n
∑

i=1
rix∗i −

n
∑

i=1
ki|x∗i − x0

i |
)
−λ

n
∑

i=1
dix∗i

≥ (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |
)
−λ

n
∑

i=1
dixi

≥ (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
kiyi

)
−λ

n
∑

i=1
dixi

(8)
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thus

(1−λ )
(

n
∑

i=1
rix∗i −

n
∑

i=1
kiy∗i

)
−λ

n
∑

i=1
dix∗i

≥ (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
kiyi

)
−λ

n
∑

i=1
dixi

(9)

that is, (x∗1,x
∗
2, · · · ,x∗n;y∗1,y

∗
2, · · · ,y∗n) is an optimal solution of (7).

On the contrary, let (x∗1,x
∗
2, · · · ,x∗n;y∗1,y

∗
2, · · · ,y∗n) be an optimal solution of (7). We

prove that x∗ = (x∗1,x
∗
2, · · · ,x∗n) is an optimal solution of the model (6). Obviously, x∗ =

(x∗1,x
∗
2, · · · ,x∗n) is an feasible solution of the model (6) and y∗i ≥ |x∗i −x0

i |. If x∗=(x∗1,x
∗
2, · · · ,x∗n)

is not optimal solution of the model (6), there exists a feasible solution x = (x1,x2, · · · ,xn)
of (6) such that

(1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |
)
−λ

n
∑

i=1
dixi

> (1−λ )
(

n
∑

i=1
rix∗i −

n
∑

i=1
ki|x∗i − x0

i |
)
−λ

n
∑

i=1
dix∗i

(10)

let yi = |xi−x0
i |, i = 1,2, · · · ,n, then x = (x1,x2, · · · ,xn;y1,y2, · · · ,yn) is a feasible solution

of (7) and

(1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
kiyi

)
−λ

n
∑

i=1
dixi

= (1−λ )
(

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |
)
−λ

n
∑

i=1
dixi

> (1−λ )
(

n
∑

i=1
rix∗i −

n
∑

i=1
ki|x∗i − x0

i |
)
−λ

n
∑

i=1
dix∗i

≥ (1−λ )
(

n
∑

i=1
rix∗i −

n
∑

i=1
kiy∗i

)
−λ

n
∑

i=1
dix∗i

(11)

From the above discussion, we can see that it can make the complex portfolio selection
simplify if properly constructing the risk function and simplifying the portfolio selection
model.

3 Portfolio selection model under fuzzy case
In an investment, the knowledge and experience of experts are very important in an

investor’s decision-making. Due to complexity and un-prediction in financial markets, it
is difficult to give the precise expected value about the risk and return, thus it can be taken
risk and return for granted as two fuzzy objectives. Since an investor can accept the return
greater than some level and accept the risk less than some level of that, the membership
function of two fuzzy objectives µmax and µmin can be given by
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µmax(x) =





0,
n

∑
i=1

rixi−
n

∑
i=1

ki|xi− x0
i | ≤ S0

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |−S0

S1−S0
, S0 ≤

n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i | ≤ S1

1,
n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i | ≥ S1

(12)

µmin(x) =





0,
n
∑

i=1
dixi ≥ T0

T0−
n
∑

i=1
dixi

T0−T1
, T1 ≤

n
∑

i=1
dixi ≤ T0

1,
n
∑

i=1
dixi ≤ T1

(13)

where S0,S1,T0,T1 are given by the investor.
By introducing the variable µ and from the theory of fuzzy set and fuzzy program-

ming, we can construct the following programming

max µ

s.t.





n
∑

i=1
rixi−

n
∑

i=1
ki|xi− x0

i |−S0

S1−S0
≥ µ

T0−
n
∑

i=1
dixi

T0−T1
≥ µ

n
∑

i=1
xi = 1

xi ≥ 0, i = 1, · · · ,n

(14)

Theorem 2. x∗ is an optimal solution of (14) if and only if there exists y∗ such that
(x∗,y∗) is an optimal solution of the following programming

max µ

s.t.





n
∑

i=1
rixi−

n
∑

i=1
kiyi−S0

S1−S0
≥ µ

T0−
n
∑

i=1
dixi

T0−T1
≥ µ

yi + xi− x0
i ≥ 0

yi− xi + x0
i ≥ 0

n
∑

i=1
xi = 1

xi ≥ 0, i = 1, · · · ,n

(15)
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Proof. It is similar to the proof the theorem 1. We omit it here.

4 Numerical example and Conclusion
In this section, we will give a numerical example to illustrate the proposed portfolio

selection model (7) and (14). We suppose that the investor considers the stock portfolio
selection in Markowitz’s paper [2] where the data as shown in the table 1.

Table 1: The return of American Tabacoo, AT&T, United Stats, General Motors, Atchi-
son&Topeka&Santa Fe, Coca-Cola, Borden, Firestone and Sharon Steel(1937-1954)

Year # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9
1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.4 ąą -0.435
1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336 0.238
1939 0.055 0.2 -0.047 0.165 -0.424 -0.078 0.381 -0.093 -0.295
1940 -0.126 0.03 0.104 -0.043 -0.189 -0.077 -0.051 -0.09 -0.036
1941 -0.28 -0.183 -0.171 -0.277 0.637 -0.187 0.087 -0.194 -0.24
1942 -0.003 0.067 -0.039 0.476 0.865 0.156 0.262 1.113 0.126
1943 0.428 0.3 0.149 0.225 0.313 0.351 0.341 0.58 0.639
1944 0.192 0.103 0.26 0.29 0.637 0.233 0.227 0.473 0.282
1945 0.446 0.216 0.419 0.216 0.373 0.349 0.352 0.229 0.578
1946 -0.088 -0.046 -0.078 -0.272 -0.037 -0.209 0.153 -0.126 0.289
1947 -0.127 -0.071 0.169 0.144 0.026 0.355 -0.099 0.009 0.184
1948 -0.015 0.056 -0.035 0.107 0.153 -0.231 0.038 0 0.114
1949 0.305 0.038 0.133 0.321 0.067 0.246 0.273 0.223 -0.222
1950 -0.096 0.089 0.732 0.305 0.579 -0.248 0.091 0.65 0.327
1951 0.016 0.09 0.021 0.195 0.04 -0.064 0.054 -0.131 0.333
1952 0.128 0.083 0.131 0.39 0.434 0.079 0.109 0.175 0.062
1953 -0.01 0.035 0.006 -0.072 -0.027 0.067 0.21 -0.084 -0.048
1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756 0.185

All computations were carried out on a WINDOWS PC using the LINDO solver.
According to the awareness of the investor’s risk aversion, we can get the corresponding
invest strategies by solving to the model (7). The table 2 shows the obtained part of the
results.

Table 2: Part results to model 7
λ (x1,x2, · · · ,x9) return risk

0.0 (0, 0, 0, 0, 1, 0, 0, 0, 0) 0.193 0.302
0.3 (0, 0, 0, 1, 0, 0, 0, 0, 0) 0.168 0.235
0.5 (0, 0, 0, 0, 0, 0, 1, 0, 0) 0.123 0.131
1.0 (0, 1, 0, 0, 0, 0, 0, 0, 0) 0.057 0.089

According to the investor’s aspiration and the given value S0,S1,T0,T1, we can get the
corresponding strategies by solving to the model (14) as shown in table 3.

Regarding the expected excess return and the tracking error as two objective functions,
we have proposed a bi-objective programming model for the index tracking portfolio se-
lection problem. Furthermore, investors’ vague aspiration levels for the excess return and
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Table 3: Part solutions to model 14
S0 S1 T0 T1 (x1,x2, · · · ,x9) µ

0.0878 0.1054 0.502 0.202 (0, 0, 0, 0, 0.4152, 0, 0.5848, 0, 0) 1
0.0988 0.20 0.402 0.282 (0, 0, 0, 0.1209, 0.8791, 0, 0, 0, 0) 0.90087

the tracking error are considered as fuzzy numbers. Based on fuzzy decision theory, we
have proposed a fuzzy index tracking portfolio selection model. An example is given
to illustrate that the proposed fuzzy index tracking portfolio selection model. The com-
putation results show that the proposed model can generate a favorite portfolio strategy
according to the investor’s satisfactory degree.
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