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Abstract Clustering is a common task in many applications e.g. digital image processing, text
mining and bioinformatics. Many techniques such as k-means, hierarchical clustering and spectral
clustering, have been proposed. In a previous study, we proposed a quadratic programming model
to address the fuzzy binary clustering problem in the unsupervised setting and then extended it to
the general clustering problem. In this paper, we extend further the model in the semi-supervised
setting. It has three salient characteristics. First, both the label and link information of known
samples can be integrated easily. Second, it illustrates the linkage between the hard binary clustering
and fuzzy binary clustering in one framework, suggesting the benefits of fuzzy binary clustering
theoretically. Third, a fast iterative algorithm is proposed, which can be applied to very large data
sets. Numerical experiments on two data sets suggest its practical effectiveness and efficiency.
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1 Introduction
Clustering is now a very common application in many disciplines such as digital im-

age processing, text mining and bioinformatics. Many methods have been proposed to
implement the task. For example, k-means sets up a parametric model to search k cluster
centers and to identify the corresponding members [4, 5, 6]. Affinity propagation method
uses the similarity matrix of samples and implements a message passing algorithm to re-
veal the underlying clustering structure of the data set [1, 2]. In a previous study, we
proposed a quadratic programming model to address the fuzzy binary clustering problem
in the unsupervised setting and then extended it to the general clustering question [7]. In
this study, we extend the model further to the semi-supervised setting by integrating more
prior information to improve the clustering accuracy.

Different from unsupervised clustering algorithms, semi-supervised clustering algo-
rithms classify the samples not only based on the measured data for all samples, but also
based on the available prior information for some samples. Because more information
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can be exploited, the accuracy of semi-supervised clustering is generally assumed to be
higher than that of unsupervised clustering. And it has attracted increasing interests from
experts in various domains. The prior information can be summarized into two popular
forms: labels for some samples and constraints for some sample pairs. The label informa-
tion for some samples assigns explicitly which clusters they belong to. The constraints for
sample pairs include "cannot-link" constraints and "must-link" constraints [2]. Cannot-
links indicate that the two samples can not be in the same cluster. Must-links mean that
the two samples must be in the same cluster. We will show that our model can integrate
both the label information and the two types of constraint information and form a convex
optimization problem.

Unlike k-means and other hard clustering algorithms, our model is based on fuzzy
binary clustering. Binary clustering is a special case of the general clustering. However it
is also an atomic operation to implement the general clustering. In the previous study, we
demonstrated how binary clustering can be used to do the general clustering. We denote
binary clusters by zero and one, respectively. Fussy labels between zero and one were
assigned to the samples to indicate how close they are to zero. In this study, we extend
the idea by replacing the zero-one cluster notations by "+1" and "−1" in this study so
that the constraint information can be integrated easily. A parameter is added for users
to control the fuzziness of the labeling. By altering this parameter, the linkage between
hard binary clustering and fuzzy binary clustering is illustrated in one framework, which
further suggests the benefits of fuzzy binary clustering.

In many applications such as text mining and bioinformatics, the data amount is very
huge. Fast and efficient algorithms are of great demand to deal with these situations.
Based on our model, we derive a very fast iterative algorithm for clustering. Given the
similarity matrix of the samples and the prior information, the algorithm only requires
matrix multiplication and the convergence is guaranteed. So it is very useful when dealing
with large data sets.

2 Methods
2.1 Unsupervised model for fuzzy binary clustering

We begin with a short review of the unsupervised model for fuzzy binary clustering we
proposed previously. Given a data set X , the similarity matrix S is first calculated based
on the domain knowledge. Then a quadratic programming model is built as follows:

min
f

N
∑

i=1

N
∑
j=1

si j( fi− f j)
2 (1)

subject to fa = 0 (2)
fb = 1 (3)
fi ≤ 1 i ∈ {1,2, · · · ,N} (4)
fi ≥ 0 i ∈ {1,2, · · · ,N} (5)

where N is the total number of data points; si j is the similarity score of data points xi and
x j; and fi is the label of data point xi to be determined. a and b are the most dissimilar
two data points in the N data points, i. e., sab = min{si j : i, j ∈ {1 · · ·N}}. The objective
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function (1) requires the similar data points have similar labels. Constraints (2) and (3)
assign data points a and b to two different clusters. Constraints (4) and (5) restrict the
labels fi to be between 0 and 1. The objective function (1) can be further written in the
vector form as f T L f , where L is the Laplacian matrix of S, i.e., L = D− S and D is a
diagonal matrix with dii = ∑N

j=1 s ji. If si j are all non-negative, L is positive semi-definite.
Then the model (1-5) is a convex optimization problem and the global optimal solution is
guaranteed.

In this model, the binary labels are denoted by zero and one. The objective function
implements the clustering task while the constraints (4) and (5)prevent the trivial result
that is all the samples belong to one cluster. Constraints (4) and (5) are added by an
assumption that the most dissimilar two samples belong to different clusters. Replacing
the zero-one notations by +1 and −1, a scalable quadratic programming model for semi-
supervised clustering with instance-level constraints can be obtained readily in the next
section.

2.2 From unsupervised to semi-supervised
Replacing the zero-one notations by +1 and −1, we develop the new model for fuzzy

binary clustering as follows:

min
f

1
2

N
∑

i=1

N
∑
j=1

si j( fi− f j)
2 (6)

subject to fi = 1 i ∈ I+ (7)
fi =−1 i ∈ I− (8)

fi ∗ f j = 1 (i, j) ∈ Imust (9)
fi ∗ f j =−1 (i, j) ∈ Icannot (10)

fi ≤ 1 i ∈ {1,2, · · · ,N} (11)
fi ≥−1 i ∈ {1,2, · · · ,N} (12)

Here si j and fi are still the similarity scores and the real-valued labels to be determined.
I+ means the known positive sample set and I− means the known negative sample set.
Imust denotes the available must link information whereas Icannot specifies the cannot link
information.

Because +1∗+1 = 1 and −1∗−1 = 1, we can add easily the must link information
into the model as (9). Because +1 ∗−1 = −1, we can add easily the cannot link infor-
mation into the model as (10). We also extend (2) and (3) to (8) and (7), respectively,
to include available label information. So we extend the binary clustering model from
the unsupervised setting to the semi-supervised setting, which can integrate both the label
information and the constraint information.

2.3 From nonconvex to convex
If all si j are positive, the objective function (6) is a convex quadratic form. But the

constraints are not all convex due to (9) and (10). Because the global optimum solutions of
convex programming problems are easy to obtained, we adopt approximations to convert
(9) and (10) to convex constraints. First, the constraints of (9) and (10) suggest that the
norms of fi and f j equal to one. Subtracting 2-fold (9) by fi ∗ fi + f j ∗ f j, we get (13).
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Subtracting 2-fold (10) by fi ∗ fi + f j ∗ f j, we get (14). (13) and (14) are convex so that
the whole model is convex.

( fi− f j)
2 = 0 (i, j) ∈ Imust (13)

( fi + f j)
2 = 0 (i, j) ∈ Icannot (14)

Moving (13) and (14) to the subject function, we finally get the following model:

min
f

1
2 f T (L+µC) f (15)

subject to fi = 1 i ∈ I+ (16)
fi =−1 i ∈ I− (17)
fi ≤ 1 i ∈ {1,2, · · · ,N} (18)

fi ≥−1 i ∈ {1,2, · · · ,N} (19)

where L is the Laplacian transform of the similarity matrix. C is the constraint matrix
constructed by Imust and Icannot , in which ci j = −1,cii+ = 1andc j j+ = 1 if (i, j) ∈ Imust
and ci j = 1,cii+ = 1andc j j+ = 1 if ((i, j) ∈ Icannot . By altering µ , the prior constraint
information is absorbed into the model smoothly. When µ is large, the constraints must
be followed. Otherwise the constraints can be modified in the solution to fit the data better.
This is especially useful when the confidence of the constraint is not strong.

2.4 From fuzzy binary clustering to hard binary clustering
Hard binary clustering can be obtained easily from our fuzzy binary clustering results.

We model the binary clustering as a process to assign samples with fuzzy labels between
+1 and −1. +1 denotes the positive cluster and −1 represents the negative cluster. From
the fuzzy labels, we can observe the deviation of one sample from the positive cluster
or the negative cluster easily by calculating the distance from the corresponding label to
+1 or −1. If the similarity matrix is given properly, we can convert the fuzzy labels to
hard labels easily based on their symbols. For example, if one sample was assigned a
fuzzy label of −0.5, it would have −1 as its hard label. If the similarity matrix is not
given properly, the symbols may not reflect their genuine labels. Then the maximum-
gap criterium can be applied by sorting the fuzzy labels from the smallest to the largest
first and then set the cutoff at where the difference of the nearest labels is maximal. For
example, given a series of fuzzy labels (0.1,0.11,0.22,0.23), the cutoff should be between
0.11 and 0.22.

We introduce a parameter, λ , into the the objective function to control the fuzziness
of the resultant labels. Then, the objective function becomes

1
2

f T (L+µC−λ I) f (20)

Through this parameter, our model forms a continuum between hard binary clustering and
the trivial one cluster. If λ is small or even a negative large number, the model tends to
produce the trivial one-cluster result. That is, all fi equal to zero. The larger λ is, the
more likely fi approaches to +1 or −1. If λ is large enough, the objective function (20)
will not be convex, indicating why hard binary clustering is hard to obtained from a new
perspective.
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2.5 From primary constraints to constraint propagation
If sample a is assumed to belong to the same class with sample b and b is assumed to

belong to the same class as sample c, then a and c should also belong to the same class.
If a and b are assumed to belong the the same class but b and c are assumed to belong to
different classes, then a and c should also belong to different classes. To exploit this type
of prior information, we introduce an additional parameter, ν , into the objective function.
The objective function turns out to be

1
2

f T (L+µCν −λ I) f (21)

where ν should be an integer more than or equivalent to one. It is reported that constraint
propagation can improve the classification. This is carried out very easily in our model
through ν .

2.6 A fast algorithm to deal with large data sets
The proposed convex model can be solved by the general quadratic programming

solver. Or, just as the fast algorithm proposed in the unsupervised setting, a similar algo-
rithm also exists to solve our model efficiently on very large data sets. The Lagrangian
function of our final model can be written as:

L( f )=
1
2

f T (L+µCν−λ I) f + ∑
i∈I+

αi( fi−1)+ ∑
i∈I−

βi( fi+1)+∑
i

γi( fi−1)+∑
i

δi( fi+1)

(22)
The Karush-Kuhn-Tucker (KKT) conditions are:

(L+µCν −λ I) f +α +β + γ +δ = 0 (23)
γi( fi−1) = 0 i ∈ {1,2, · · · ,N} (24)
δi( fi +1) = 0 i ∈ {1,2, · · · ,N} (25)

fi = 1 i ∈ I+ (26)
fi =−1 i ∈ I− (27)
fi ≥−1 i ∈ {1,2, · · · ,N} (28)

fi ≤ 1 i ∈ {1,2, · · · ,N} (29)
γi ≥ 0 i ∈ {1,2, · · · ,N} (30)
δi ≤ 0 i ∈ {1,2, · · · ,N} (31)

These conditions can be further reduced as:

fi = 1 (32)

or
fi =−1 (33)

or
fi =−

1
Lii

∑
j 6=i

Li j f j (34)

for i /∈ I+
⋃

I−, where L = L+µCν −λ I. So we design the following algorithm to solve
our model efficiently on large data sets:
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• Step 1: Let t = 0, initialize fi = 1 if i∈ I+, fi =−1 if i∈ I− and fi = 0 if i /∈ I+
⋃

I−.
• Step 2: Let t = t + 1, calculate f t

i = − 1
Lii

∑ j 6=i Li j f t−1
j . If f t

i > 1, let f t
i = 1; if

f t
i <−1, let f t

i =−1.
• Step 3: If maxi | f t

i − f t−1
i |< ε where ε is a predefined stopping criterion, then stop.

Otherwise go to Step 2.

If L is positive definite, the whole model is convex and the global optimum can be reached
by this algorithm.

2.7 From binary clustering to multiple clustering
Our model is initially proposed for fuzzy binary clustering. It can be extended to

multiple clustering easily by adopting the one-vs-all strategy that can be stated as follows

• Step 1: Select one class randomly, denote it as G and the other classes as G. Apply
our model to classify the unknown samples to G or G.

• Step 2: If there are more than two classes in G, repeat Step 1 on G.

3 Experiments
We evaluated our model on two data sets. One is Fisher’s Iris data in which there are

three classes of samples. Class One can be separated linearly from Class Two and Three
[8]. Class Two can not be separated linearly from Class Three. The other data set is the
gene expression data of a series of leukemia patients [3]. There are two classes. One is
acute myeloid leukemia (AML) and the other is acute lymphoblastic leukemia (ALL). The
ALL samples can be further divided into two groups based on the sample sources. One
is from T cells and the other is from B cells. Evaluations on these data sets suggest the
effectiveness of our model and the efficiency of our algorithm. The optimization model is
implemented and solved by MATLAB on a PC with 2.4G Hz Pentium 4 processor.

3.1 Fisher’s Iris data
The construction of the similarity matrix is the first step to use our method for clus-

tering samples. We first calculated the Pearson correlation coefficients of samples by
exploiting the given four features for each sample. Most of the samples are highly corre-
lated. The minimum correlation coefficient is 0.3574. To highlight the underlying cluster
structure, we set a cutoff (0.9) to convert the smaller values to zero. The similarity matrix
is shown in Figure 1. Randomly selecting three must links and three cannot links, the
samples were assigned fuzzy labels between −1 and +1 (Figure 2) and Class One was
discriminated from Class two and Class Three accurately. This is an easy task and we use
it to show how our model assigns fuzzy labels based on the similarity matrix and prior
constraint and label information.

After Class One was identified, we applied our model to the other 100 samples to dis-
criminate Class Two from Class Three that can not be classified linearly. We constructed
the similarity matrix by first calculating the Pearson correlation coefficients between sam-
ples and then set a cutoff (0.998) to convert the similarity matrix to a sparse graph (Figure
3. Then we evaluated the impacts of λ , µ and ν on the classification. Randomly selecting
ten must links and cannot links (n = 10), we repeated classification for 100 times for each
combination of λ (λ ∈ {−1,−2,−3}) and µ(µ ∈ {0,1,10}) with ν = 1. The accuracy
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The similarity matrix of Iris data
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Figure 1: The similarity matrix of Iris
data. Class One: 1-50; Class Two: 51-
100; Class Three: 101-150.

Figure 2: The fussy labels for each sam-
ple in Iris data.

The similarity graph of samples of Class Two and Class Three in Iris data
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Figure 3: The similarity matrix of sam-
ples in Class Two and Three in Iris data.

Figure 4: The accuracy with different λ
and µ .

can reach 0.95 (Figure 4). Increasing the amount of the prior information (n = 100), the
accuracy can be further improved to 0.98.

3.2 Golub’s gene expression data
We further evaluated our method on the gene expression data. Because there is much

noise in the gene expression data, we first set a ceiling (16,000) and a floor (100) for
the intensities and then filter those genes with max/min≤ 5 or max−min≤ 500, where
max and min mean the maximum and minimum gene expression values in all the samples,
respectively. Then we calculated the Pearson correlation coefficients between samples. To
enhance the statistical signals, we calculated the Pearson correlation coefficients among
samples based their initial correlations. All except one AML samples are successfully
discriminated from the ALL samples with λ = 1,µ = 1,ν = 1 and n = 10 (accuracy:
71/72 = 98.6%). Then we applied our method to discriminate B cell ALLs from T cell
ALLs based on the same similarity matrix in which the similarity scores less than 0.4
were filtered to enhance the statistical signal. All T cell ALLs except one were correctly
identified (accuracy: 46/47 = 97.8%). This example suggests the effectiveness of our

184 The 10th International Symposium on Operations Research and Its Applications



method further.

4 Discussions and Conclusion
In this study, we propose a flexible quadratic programming framework for semi-

supervised clustering. It can integrate both label information and constraint information.
It provides handy parameters for users to calibrate the fuzziness of the resultant labels, to
control the confidence of the prior constraint information and to tune the propagation of
the constraint links. It solves multi-class clustering through recursive binary clustering.
Numerical experiments on two real data sets suggest its effectiveness. It should be a use-
ful tool to help researchers understand the meanings underlying various types of data in
many disciplines. Because it is related closely to spectral clustering, we will compare it
to the available spectral clustering methods and other semi-supervised methods in future
[9, 10]. Because the clustering is dependent on the original data, we will also do the
sensitivity analysis of our model in future.
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