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Abstract In this paper, we study a stochastic version of the fault-tolerant facility location problem.
By exploiting the stochastic structure, we propose a 5-approximation algorithm which uses the LP-
rounding technique based on the revised optimal solution to the linear programming relaxation of
the stochastic fault-tolerant facility location problem.
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1 Introduction
The facility location problem (FLP) has been widely studied in the operations research

literature. The first constant approximation ratio is 3.16 which is given by Shomys et al.
[15] using the LP-rounding technique. Then, there are several results with respect to the
approximation algorithm (cf. [7, 8, 11]) for this problem. The current best approximation
ratio is 1.488 by Li [16] using LP-rounding. Sviridenko [18] shows that it is impossible
to design an approximation algorithm with an approximation ratio smaller than or equal
to 1.463, unless P=NP. For a discussion of the variants of the FLP, we refer to [5, 21] and
the references therein.

The fault-tolerant facility location problem (FTFLP) is one of the most important vari-
ants of the FLP. In the setting of the FTFLP, each client is required to be assigned to more
than one facility in order to prevent that the open facility maybe failure which leads to
the situation that some clients cannot be served. The assignment cost of each client is a
weighted combination of the distances to the facilities to which the client connects. This
problem is first studied by Jain and Vazirani [9], in which they give a primal-dual algo-
rithm with a logarithmic of the largest requirement approximation ratio for the weight of
each client assigning to distinct facilities being uniform. Then, Swamy and Shmoys [14]
give a 2.076-approximation algorithm for the uniform weight. The approximation ratio is
further improved to 1.7245 by Byrka et al. [3]. Guha et al. [6] give a 2.408-approximation
algorithm for the generalized non-uniform weight case. On the other hand, the stochas-
tic facility location problem (SFLP) has also been studied extensively in the literature.
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Generally speaking, the SFLP contains a 2-stage stochastic process: in the first stage of
the process, the information of the clients are unknown. The possible scenarios and their
corresponding probability distributions are given in the second stage. Each facility at dif-
ferent stages and scenarios is different. We can open some facilities in the first stage which
can serve any client in any scenario and the facilities open in each scenario can only be
used to serve clients in that scenario. The problem is introduced by Ravi and Sinha [12],
who present an LP-rounding 8-approximation algorithm. Then, there are several results
related to the SFLP (cf. [10, 13, 17]). The current best approximation ratio for the SFLP
is 1.8526 by Ye and Zhang [19].

In this paper, we are interested in the stochastic fault-tolerant facility location problem
(SFTFLP) in which each client in each scenario is specified to be assigned to more than
one facility. Intuitively, some facilities could be failure so that the clients require some
backups. We give a LP-rounding 5-approximation algorithm by integrating the techniques
of [6, 12, 15].

2 The 2-stage stochastic fault-tolerant facility
location problem

For the 2-stage stochastic fault-tolerant facility location problem, we are given a facil-
ity set F in the first stage only. For each facility i, its open cost is f 0

i in the first stage. In
the second stage, we are given the client sets Ds which need to be served for each scenario
s ∈ {1,2 · · · ,S}, a probability ps associated with each scenario s, and a distance function
c : F × (

∪
s Ds) −→ R+ which is metric, i.e., satisfies symmetry, nonnegativity, and the

triangle inequality. In each scenario s, it is allowable to open some facilities to serve the
clients in Ds. The open cost of facility i in scenario s is f s

i . In each scenario s, each client
in Ds need to be assigned to r j distinct facilities (according to certain weights) which are
opened only in the first stage and the corresponding scenario. Let the weights of assigning
j to the r j facilities be w1

j ≥ w2
j ≥ ... ≥ w

r j
j , that is, the assignment cost of client j is the

weighted combination of the distance to r j closest facilities. The goal of the problem is
to assign the clients to the opened facilities such that the total expected facility open and
assignment costs are minimized.

We denote F := {(i, t)|i ∈ F, t = 0,1, ...,S}, D := {( j,r,s)|s = 1, ...,S, j ∈ Ds,r =
1, ...,r j}, and D̃ := {( j,s)|s = 1, ...,S, j ∈ Ds}. Also, let p0 := 1. We call the element
in F a facility-scenario pair and similarly, the elements in D and D̃ are called a client-
copy-scenario triple and a client-scenario pair, respectively. For each facility-scenario
pair ( j,s), r ∈ 1,2, · · · ,r j is called a copy of ( j,s). Following the above notations, we
can restate the problem as: given a facility-scenario pair set F and a client-copy-scenario
triple set D , we intend to open a facility-scenario pair set F0 in the first stage and Fs in
scenario s of stage 2 in which the facility open cost is ps f s

i , and assign each client-scenario
pair to r j distinct opened facility-scenario pair in which each client-copy-scenario triple
( j,r,s) can only be assigned to the facility-scenario pairs in F0 and Fs, so that the total cost
including the facility open cost and the assignment cost is minimized. In order to ensure
( j,r,s) cannot be assigned to the facility-scenario pair (i, t), where t ̸= 0 or s, we define
the distance between a facility-scenario pair and a client-scenario pair as follows:

cts
i j =

{
ci j if t = 0 or s;
+∞ otherwise.
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To this end, the problem can be formulated as the following integer program:

(IP)

min ∑
(i,t)∈F

pt f t
i yt

i + ∑
(i,t)∈F ,( j,r,s)∈D

pswr
jc

ts
i jx

tsr
i j

s.t. ∑
(i,t)∈F

xtsr
i j ≥ 1, ∀( j,r,s) ∈ D ,

r j

∑
r=1

xtsr
i j ≤ yt

i, ∀(i, t) ∈ F ,∀( j,r,s) ∈ D ,

xtsr
i j ∈ {0,1}, ∀( j,r,s) ∈ D ,

yt
i ∈ {0,1}, ∀(i, t) ∈ F ,

(1)

in which, yt
i indicates whether the facility-scenario pair (i, t) (including t = 0) is open;

xtsr
i j denotes whether client j in scenario s is assigned to the facility-scenario pair (i, t) and

(i, t) is the rth closest open facility-scenario pair to j. The first constraint of (1) requires
each client-copy-scenario pair ( j,r,s) should be assigned to a facility-scenario pair. The
second constraint of (1) models that if the client-copy-scenario triple ( j,r,s) is assigned
to the facility-scenario pair (i, t), the pair (i, t) should open, and each facility-scenario pair
(i, t) can only serve one copy of the same client-scenario pair ( j,s).

By relaxing the integrality constraints, we obtain the following LP relaxation:

(LP)

min ∑
(i,t)∈F

pt f t
i yt

i + ∑
(i,t)∈F ,( j,r,s)∈D

pscts
i jw

r
jx

tsr
i j

s.t. ∑
(i,t)∈F

xtsr
i j ≥ 1, ∀( j,r,s) ∈ D

r j

∑
r=1

xtsr
i j ≤ yt

i, ∀(i, t) ∈ F ,∀( j,r,s) ∈ D

xtsr
i j ≥ 0, ∀( j,r,s) ∈ D

0 ≤ yt
i ≤ 1, ∀(i, t) ∈ F .

(2)

Let F∗ = ∑
(i,t)∈F

pt f t
i yt

i and C∗ = ∑
(i,t)∈F

∑
( j,r,s)∈D

ptwr
jc

ts
i jx

ts
i j be the optimal fractional

facility cost and assignment cost, respectively.

3 The algorithm
Now we proceed to describe the algorithm as follows.

Algorithm 1. (LP-rounding algorithm)

Step 1. Solving the LP relaxation and constructing a consistent solution.
Solve the LP relaxation (2) to obtain the optimal solution (x,y). We next convert
it to another solution (x̄,y) which has some useful properties as follows. For each
client-scenario pair ( j,s) ∈ D , sort all facility-scenario pairs according to their
distances to ( j,s) in a nondecreasing order. For the same facility in the first stage
and any scenario, we put the first stage facility before the scenario one. Then, we
assign the first copy of ( j,s) to the facility-scenario pair (i, t)(t = 0 or s) in terms of
the above ordering, i.e., we set x̄ts1

i j := yt
i . We repeat the above operations until the

summation of x̄ equals to 1. Therefore, the last facility-scenario pair (i, t) may not
be used completely, i.e., x̄ts1

i j < yt
i . For the second copy, we set x̄ts2

i j := yt
i − x̄ts1

i j . After
picking up one unit of the facility-scenario pair, we turn to the next copy. Repeat
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this process for all copies of the pairs. Then, we can obtain a solution (x̄,y) which
is called a consistent solution.

Step 2. Filtering and scaling.
For each client-scenario pair ( j,s), we run the following operations in the increas-
ing order of copies r = 1,2, · · · ,r j. For each client-copy-scenario triple ( j,r,s),
sort the facility-scenario pairs in the nondecreasing order of their distances to
( j,r,s)(same as Step 1). Then, we set Csr

j := ct∗sr
i∗ j , where (i∗, t∗) is the first pair

such that ∑
(i,t):cts

i j≤ct∗s
i∗ j

x̄tsr
i j ≥ 2

5 . We also set

x̂tsr
i j :=





x̄tsr
i j if cts

i j < Csr
j ;

2
5 − ∑

(i,t):cts
i j<ct∗s

i∗ j

x̂tsr
i j if cts

i j = Csr
j ;

0 otherwise.

Furthermore, we scale x̂tsr
i j by 5

2 to obtain x̃tsr
i j such that ∑

(i,t)
x̃tsr

i j = 1. Therefore, we

let ỹt
i := min{ 5

2 yt
i,1}. Let C̄( j,r,s) denote the facility-scenario pair set which serves

( j,r,s) according to the solution (x̃, ỹ).
Step 3. Clustering.

For ease of exposition, we denote F0( j,r,s) := {(i,0)|x̃0sr
i j > 0}, Fs( j,r,s) := {(i,s)|

x̃ssr
i j > 0}, w0( j,r,s) := ∑

(i,0)∈F0( j,r,s)
x̃0sr

i j , and ws( j,r,s) := ∑
(i,s)∈Fs( j,r,s)

x̃ssr
i j . Let D̄

denote the set of the unassigned client-copy-scenario triples which will be updated
in the clustering process. Initially, D̄ := D which contains all the client-copy-
scenario triples. For each client-copy-scenario triple ( j,r,s), let C̄( j,r,s) denote
the facility-scenario pair set which serves ( j,r,s) according to the solution (x̃, ỹ).

Step 3.1 Picking center.
Arrange all the client-copy-scenario triples in the nondecreasing order of the value
of Csr

j . Assume ( j,r,s) has the smallest Csr
j , which we call a center.

Step 3.2 Choosing facility-scenario pair set.
We pick up the pairs in F0( j,r,s), if w0( j,r,s) ≥ ws( j,r,s); otherwise pick up the
pairs in Fs( j,r,s). Assume the chosen facility-scenario pair is (i, t)(t is 0 or s).
Let NF( j,r,s) and Y be the facility-scenario pair set which will be assigned to the
center ( j,r,s) and the sum of the values of the facility-scenario pairs in NF( j,r,s).
Given the value of Y , partition (i, t) means partitioning (i, t) into (i1, t) and (i2, t)
such that ỹt

i1 := wt( j,r,s) and ỹt
i2 := Y − ỹt

i2 , while maintaining ∑
r

x̃tsr
i j ≤ ỹt

i for both

i = i1 and i = i2.
Initially, set NF( j,r,s) := /0 and Y := 0. Let (i′, t) := argmin(i,t)∈Ft ( j,r,s) pt f t

i and
set Y := ỹt

i′ , Ft( j,r,s) := Ft( j,r,s) − {(i′, t)}, and NF( j,r,s) := {(i1, t)}. If Y >
wt( j,r,s), partition (i′, t). Otherwise, we check whether Y is exactly wt( j,r,s)
or not. If Y = wt( j,r,s), we can obtain a facility-scenario pair NF( j,r,s). If
Y < wt( j,r,s), we choose a facility-scenario pair (i, t) in Ft( j,r,s) arbitrarily and
set Y := Y + ỹt

i,Ft( j,r,s) := Ft( j,r,s)−{(i, t)}. After that, it is possible that Y >
wt( j,r,s). For this, partition (i, t) and set NF( j,r,s) := NF( j,r,s)∪{(i1, t)}, Y :=
Y − ỹt

i2 . Otherwise, set NF( j,r,s) := NF( j,r,s) ∪ {(i, t)} and check whether the
value of Y is bigger than wt( j,r,s) again as above.
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At the end of this step, we can obtain a facility-scenario pair set NF( j,r,s) of a
center ( j,r,s) whose value is wt( j,r,s) exactly.

Step 3.3 Choosing client-copy-scenario triple set and reassigning.
For each remaining client-scenario pair ( j′,s′), we denote

R( j′,s′) := {r|∃(i, t) ∈ NF( j,r,s), s.t. x̃ts′r
i j′ > 0}.

Assume R( j′,s′) = {r1,r2, · · · ,rk( j′,s′)}. Then, ND( j,r,s) :=
∪

R( j′,s′ )̸= /0
{( j′,r1,s′)}

and D̄ := D̄ −ND( j,r,s).
It is necessary to deal with the remaining copies of ( j′,s′). Initially, T ( j′,r1,s′) is
the facility-scenario pair set which serves ( j′,r1,s′) but not in NF( j,r,s), that is,
T ( j′,r1,s′) := C̄( j′,r1,s′)−NF( j,r,s). For a client-copy-scenario triple ( j′,rm,s′),
set X := ∑

(i,t)∈NF ( j,r,s)
x̃ts′rm

i j′ . Then, check whether X is exactly 0 or not. If it is true, we

turn to the next copy. Otherwise, let (ĩ, t̃) := argmin(i,t)∈T ( j′,r1,s′) cts′r1
i j′ . If X > ỹt̃

ĩ , set

x̃t̃s′rm
ĩ j′ := ỹt̃

ĩ, T ( j′,r1,s′) := T ( j′,r1,s′)−{(ĩ, t̃)}, and X := X − x̃t̃s′rm
ĩ j′ ; Otherwise, set

x̃t̃s′rm
ĩ j′ := X , ỹt̃

ĩ := ỹt̃
ĩ − X , and X := X − x̃t̃s′rm

ĩ j′ . Finally, for all (i, t) ∈ NF( j′,r1,s′),

set x̃ts′rm
i j′ := 0.

Step 3.4 Constructing cluster.
We call NF( j,r,s) and ND( j,r,s) combined with ( j,r,s) is a cluster centered at
( j,r,s).
Repeat the above procedure until each client-copy-scenario triple belongs to some
cluster.

Step 4. Rounding.
We can obtain several disjoint clusters at the end of Step 3. In each cluster, we open
the cheapest facility-client pair and close the others, and assign each client-copy-
scenario triple to the opened facility-scenario pair.

Theorem 1. Algorithm 1 is a well-defined polynomial-time 5-approximation algorithm
for the SFTFLP.

A thorough proof of Theorem 1 will appear in the full version of the paper.
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