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Abstract Identifying community structure is an important step to reveal the functional character-
istics of complex networks. Recently, many models and algorithms have been designed to identify
communities in a given network. Here, we propose a general mathematical programming frame-
work to optimize some modularity criteria under certain constraints. We then show that several
existing models are special cases of our framework by taking different kinds of modularity criteria
and constraints. In addition, a regularization term is introduced as an additional objective to con-
sider the parsimony principle in community structure. Experiments on several toy networks show
that our new model is simple yet insightful for the community identification problem.

Keywords Optimization model; Complex network; Community identification; Quantitative mod-
ularity

1 Introduction
Networks have become a universal language to understand systems of interacting ob-

jects, in diverse disciplines including biological organisms, information communication,
and human society. As a result, many new words have been invented, such as network bi-
ology and network medicine [1, 2]. To study the structure and dynamics of networks, one
important strategy is to identify communities or modules [8, 6]. In topological meaning,
a community is qualitatively defined as a sub-network whose nodes are connected tightly
inside and sparsely to the outside [11, 10, 12, 13]. In reality, community means groups of
related nodes that correspond to functional subunits such as protein complexes, biological
pathways, or social clubs. Thus uncovering such community structure not only helps us
understanding the topological structure, but also reveals the functionality of large-scale
networks.

So far, a large number of methods have been developed for detecting communities
in complex networks. Methods include but not limited to clique overlap-based hierarchi-
cal clustering [15], clique percolation method [16], subgraph fitness method [17], Potts
model [20], information theoretical method [21], random walk methods [22], optimiza-
tion of modularity measures [19, 18], multiple resolution method [9], and space informa-
tion based method [4]. However, the connections and differences among these methods
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remain unclear. Thus it is in pressing need for some general framework to unify these var-
ious methods. This framework will provide further insights for community identification
problem and allow new method development.

In this paper, we formulate community identification as a general optimization prob-
lem. Specifically, we propose a mathematical programming framework to optimize some
modularity criteria under certain constraints. We then show that several existing models
are special cases of our framework by taking different kinds of modularity criteria and
constraints. In addition, a regularization term is introduced as an additional objective to
ensure the sparsity of decision variables. Finally experiments on several toy networks
show that our new model is simple yet insightful for community identification problem.

2 A general optimization model
Consider an undirected network G = (V,E), where A = (ai j)n×n is the adjacency ma-

trix of G and n is the number of nodes. To understand and reveal the cluster pattern in
the network, we adopt a divide-and-conquer strategy to decompose it into communities,
which are informally defined as densely connected sets of nodes. In most existing litera-
ture, community identification procedure is modeled in a node or vertex based viewpoint,
in which the decision variables are whether one node belongs to a community. In other
words, we need to decide which vertex belongs to which community. However, the num-
ber of communities in the network is unknown and should be treated as a decision variable
to be determined in the optimization procedure. Furthermore, communities in networks
often overlap such that nodes simultaneously belong to several groups [3].

Due to this difficulty, conceptually we will switch to an edge based viewpoint and
communities are viewed as groups of node pairs rather than nodes. We call it node-
pair based model and the decision variable is whether one node pair (i, j) belongs to a
specified community. In other words, we will decide if for each pair of vertices, it belongs
to a same community. Then for each node pair (i, j), we have one variable xi j. xi j = 1
means that i and j belong to the same community, and xi j = 0 that i and j are in different
communities. In essence, the community identification problem is to optimally choose a
certain number of node pairs taking value 1 and eventually decompose the network into
several communities.

To optimally choose a set of node pais, we need to rank all the node pairs by weight-
ing their importance in community structure. We note that the widely used modularity
measure Q will provide some hints. It’s well known that community identification can be
achieved by optimizing certain modularity measures and one popular modularity measure
is the modularity function Q developed by Newman [19]. It is an index for evaluating
how good a community partition is.

Given a partition PK = (G1, G2, · · · , GK) = ((V1,E1),(V2,E2), · · · ,(VK , EK)), where K
is the number of candidate communities, the modularity function Q [19] is defined as

Q =
K

∑
s=1

[
L(Vs,Vs)

2L
−
(

L(Vs,Vs)+L(Vs,V s)

2L

)2
]
, (1)

where L = L(V,V )/2 is the total number of links in the network, and L(Vs,Vs)+L(Vs,V s)
is the total degree of the nodes in community s. This measure provides a way to de-
termine if or not a partition is good enough to decipher the community structure of a
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network. Generally, a larger Q corresponds to a better community structure. Maximizing
the modularity Q has been a widely accepted method for detecting community structure
of complex networks [12].

Alternatively the modularity function Q [19] is defined as

Q =
1

2m ∑
i, j
(ai j−

did j

2m
)δ (`(i), `( j)) (2)

Here the adjacency matrix of network G is denoted by A = (ai j), thus ai j = 1 if node i
and j share an edge, ai j = 0 otherwise. m is the total number of edges. di and d j are the
degrees of node i and j. `(i)∈ PK denotes the community belongs of node i. For example,
`(i) = G1 means node i belongs to community G1. δ denotes the Kronecker Delta, which
is 1 if node i and j belong to the same community, and 0 otherwise.

Recalling the definition of decision variable xi j, the modularity function Q can be
reformulated as follows,

Q =
1

2m ∑
i, j
(ai j−

did j

2m
)xi j (3)

It’s easy to see that node pair (i, j) is weighted by (ai j − did j
2m )/2m and maximizing

modularity function Q is equivalent to maximize the weight sum of a subset of node pairs
(xi j = 1). More generally, we suppose the network is weighted by a matrix W modified
from adjacency matrix A, where wi j is the weight on the vertex pair (i, j). Then, the
objective function is to maximize the summed weights for the selected node pairs. At
the same time the node pair selection is usually guided by a set of constraints. Then the
community identification can be written as the following general optimization model.

max
xi j

∑n
i=1 ∑n

j=1 wi jxi j (4)

s.t. xi j ∈ F, F is a constraint set
xi j = 0,1, i, j ∈ {1,2, · · · ,n}

Generally speaking, solving integer programming is NP-hard, and thus not suitable
for large scale network analysis. Straightforwardly, we can replace the integer constraint,
that each xi j is an integer from 0,1, with the constraint that each xi j is a real number
between 0 and 1. Suppose the problem is unconstrained or F is a linear constraint set,
then a linear programming can be obtained and solved in polynomial time by the widely
used package CPLEX or LPsolver. After solving the linear programming, we will obtain
fractional value xi j for every pair of nodes. Then a post-processing step is necessary to
identify communities starting from these fractional assignments. Here, some heuristic
strategies have to be adopted. Basically, the xi j can be treated as a metric and interpreted
as the “distance” between node i and j. We use these distances to greedily and repeatedly
find clusters of “tightly connected” nodes, which are then removed. We note that this
procedure is not accurate and the computational performance depends on the structure of
xi j. This procedure is also called rounding of the LP and a detailed algorithm is presented
in [5].

Our model (4) is a general optimization framework. By changing the definition of W
and the constraint set F , we can unify different existing models.
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2.1 Choices of constraints set F
Since the choices of F are more straightforward than the choices of W , we firstly

introduce the different strategies to incorporate different constraints in our optimization
model.

If we don’t allow the overlaps among the communities, we need to ensure that the xi j
are consistent with each other: if i and j are in the same community, and j and k are in the
same community, then so are i and k. This constraint can be written as a linear inequality
(1− xik) ≤ (1− x jk)+ (1− xi j). For all triples (i, j,k) we obtain the following integer
linear programming,

max
xi j

1
2m ∑n

i=1 ∑n
j=1 wi jxi j (5)

s.t. (1− xik)≤ (1− x jk)+(1− xi j),∀i, j,k

xi j = 0,1, i, j ∈ {1,2, · · · ,n}

where m is the number of edges in network G. The advantage is that we introduce a set of
linear constraints, while the disadvantage is that too many constraints are introduced into
the model. For example if we have n nodes in the network and there will be n3 constraints
in the above model, which increase the complexity of model even when we relax xi j to a
real number between 0 and 1. So this model is more efficient for the case of overlapping
community structures.

Sometimes we have prior information for the community identification and can easily
incorporate into our model. For example the Correlation Clustering problem. Each vertex
pair (i, j) in the network is label either + (i and j are similar or highly correlated, and tend
to belong to the same community) or− (i and j are dissimilar or lowly correlated, and tend
to belong to different communities). A typical application of this problem is illustrated in
[23]. To identify biological meaningful modules in protein-protein interaction network,
two interacted proteins correlated to each other in gene expression level should belong to
the same module, while two proteins which are anti-correlated should belong to different
modules. The goal is to partition the network into communities by considering these prior
information, which cannot be simply covered by the adjacency matrix A. Let E+ and E−
be the sets of edges labeled + and −, respectively. If these prior information is reliable
enough, the problem can be formulated as

max
xi j

1
2m ∑n

i=1 ∑n
j=1 wi jxi j (6)

s.t. xi j = 1, (i, j) ∈ E+

xi j = 0, (i, j) ∈ E−
xi j = 0,1, i, j ∈ {1,2, · · · ,n}

However, the prior information is usually noisy and should be treated as soft con-
straints. We then penalize the constraint to objective function, i.e., to minimize the number
of “−” pairs inside communities and the number of the “+” pairs between communities.
Then the problem can be formulated as follows (parameters ν and µ are introduced to
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weight the importance of prior information),

max
xi j

1
2m ∑n

i=1 ∑n
j=1 wi jxi j +µ ∑(i, j)∈E+

xi j−ν ∑(i, j)∈E− xi j

s.t. xi j = 0,1, i, j ∈ {1,2, · · · ,n}

The simplest case is that constraint set F is empty, i.e., there is no constraints for
decision variable xi j. The advantage is that community overlap is allowed. However our
model becomes trival given that W is a positive matrix. We will show later that we can
utilize this benefit by introducing additional regularization term in objective function.

2.2 Modularity measure Q optimization
In our model (4), we set W = 1

2m (A−P), i.e., wi j =
1

2m (ai j− pi j) =
1

2m (ai j− did j
2m ).

Then following modularity optimization model in [5] can be deduced from our general
model (4).

max
xi j

1
2m ∑n

i=1 ∑n
j=1(ai j− did j

2m )xi j (7)

s.t. (1− xik)≤ (1− x jk)+(1− xi j),∀i, j,k

xi j = 0,1, i, j ∈ {1,2, · · · ,n}

2.3 Multiple resolution community model
Optimization of modularity function Q has been exposed to suffer from a so-called

resolution limit problem, i.e., communities in some special networks may not be resolved
by optimization of Q even in an extreme case where the network consists of complete
graphs connected by single bridges [7]. In other words, optimization of Q fails to zoom
in some small qualified communities.

Resolution limit can be avoided by modifying the definition of W . In our model (4),
we set Wγ = 1

2m (A−P+ γI), where I is the identity matrix. γ is the factor for multi-
resolution community identification [9]. Then wi j =

1
2m (ai j− pi j + γδ (i, j)) = 1

2m (ai j−
did j
2m + γδ (i, j)). δ denotes the Kronecker Delta, which is 1 if its arguments are identical,

and 0 otherwise.

max
xi j

1
2m ∑n

i=1 ∑n
j=1(ai j− did j

2m + γδ (i, j))xi j (8)

s.t. (1− xik)≤ (1− x jk)+(1− xi j),∀i, j,k

xi j = 0,1, i, j ∈ {1,2, · · · ,n}

This idea is originally introduced in [9]. The new definition of W by introducing pa-
rameter γ allows the screening of the modular structure by analyzing the optimal modular
structure of Wγ for different values of γ . And the topological structure reveals large groups
for small value of γ , and smaller groups for large value of γ . In addition, we note this γ
strategy is general and in principle can be used in any quality function.
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2.4 Space-independent community model
In a recent paper [4], the authors show that the spatial information plays a crucial role

by affecting, directly or indirectly, network community structure. In a similar manner,
space information can be readily introduced in the definition W as W = 1

2m (A−Pspa),
where the definition of Pspa is from Equation 5 in [4]. The physical meaning is that W
favors communities made of node i and j such that wi j is large, i.e., pairs of nodes with
short distance.

max
xi j

1
2m ∑n

i=1 ∑n
j=1(ai j− pspa

i j )xi j (9)

s.t. (1− xik)≤ (1− x jk)+(1− xi j),∀i, j,k

xi j = 0,1, i, j ∈ {1,2, · · · ,n}

2.5 More choices of W
Behind the definition of modularity Q = 1

2m ∑(A−P), the concept is that links are
more abundant within communities than would be expected on the basis of chance. Here
the meaning of “by chance” (i.e. the null hypothesis for community identification) is em-
bodied by the matrix P = (pi j). In the current definition Q, pi j is the expected weight
of a link between node i and j over an ensemble of random networks with certain con-
straints. The most popular choice, proposed by Newman and Girvan, is pi j =

did j
2m , which

is theoretical estimation of the true pi j.
The above analysis allows further extension of W . Different null models can be con-

structed depending on the network under consideration. For example, we can formulate
the following optimization model,

max
xi j

1
2m ∑n

i=1 ∑n
j=1(ai j− si j)xi j (10)

s.t. (1− xik)≤ (1− x jk)+(1− xi j),∀i, j,k

xi j = 0,1, i, j ∈ {1,2, · · · ,n}

where si j is the null hypothesis matrix derived by numerical simulation. For instance,
si j can be calculated by random shuffling the network 1,000 times keeping the degree
distribution unchanged. We believe that si j will provide more accurate approximation for
the true pi j.

We also note that adjacent matrix A of network G is used in the above models. Sim-
ilarity, other substitutive matrix, such as Laplacian matrix and diffusion kernel, will lead
to more choices of W .

3 A regularized optimization model
In essence, the community identification problem is to optimally choose a certain

number of node pairs and eventually decompose the network into several communities.
We have already introduced the objective to maximize the selected weights. Another
natural objective function is parsimony, i.e., to minimize the number of selected node
pairs (to maximize the number of zero variables in our model (4). The motivation is as
follow. Suppose in extreme case we have a network equally decomposed into k isolated
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Figure 1: Illustration of two toy examples for the resolution limit and misidentification
phenomena. The left network consists of a ring of n cliques (n ≥ 3), connected through
single links. Assuming that there are 2k cliques. The network has a clear modular struc-
ture where each community corresponds to a single clique. But optimizing Q combines
two neighboring cliques as one community and fails to obtain the correct partition. The
right network consists of three cliques Cn,Cn−1,Cl with different sizes. When n >> l,
the clique Cl is not a qualified community, however, optimization Q will identify Cl as a
community in some range of n.

communities. Every community is a clique. Then the percentage of non-zero values in
the solution xi j (selected edges) is roughly 1/k. When k is large, a lot of xi j are equal
to zero. Strong regularization is necessary in this case. Here we use regularization term
∑i j xi j to maximize the number of zero variables.

max
xi j

∑n
i=1 ∑n

j=1 wi jxi j−λ ∑n
i=1 ∑n

j=1 xi j (11)

s.t. xi j ∈ F, F is a constraint set (12)
xi j = 0,1, i, j ∈ {1,2, · · · ,n}

In this way, we can propose a new method for modularity identification. All the
above models can be easily improved by introducing regularization term. Next we will
consider the simplest case to illustrate the advantage of regularization idea. If there is
no constraints in (11), our model can be easily solved. The advantage is that community
overlap is allowed. The solution we use is usually called soft thresholding: each xi j is
reduced by an amount λ in absolute value and is set to zero if its absolute value is less
than zero. Algebraically, soft thresholding is defined by

xi j = sign(wi j)(|wi j|−λ )+ (13)

where + means positive part (y+ = y if y > 0 and zero otherwise).

4 Pilot studies on two toy examples
We use two toy examples to conceptually show the advantage of introducing regular-

ization term in model (11).
We first apply our method in the well-known ring of clique example (left network in

Figure 1). Resolution limit problem means that communities in some special networks
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may not be resolved by optimization of Q even in an extreme case where the network
consists of complete graphs connected by single bridges [7]. In other words, optimization
of Q fails to zoom in some small qualified communities. Suppose we have k cliques, each
clique has n nodes. Then the number of total edges is m = kn(n−1)/2+ k. We calculate
the value of matrix W as

wi j =





1
2m (1− n2

2m ) if (i, j) ∈Cn and contain no outside connecting node,
1

2m (1−
n(n+1)

2m ) if (i, j) ∈Cn and contain outside connecting node,
1

2m (1−
(n+1)2

2m ) if (i, j) connects two adjacent cliques,
0 otherwise.

(14)

We calculate the solution of our model by soft thresholding (13). When we choose
1

2m (1−
(n+1)2

2m ) < λ < 1
2m (1−

n(n+1)
2m ), every clique Cn can be correctly identified as one

single community. This demonstrates that our regularized model does not suffer from
resolution limit in this well-known example.

In addition to the resolution limit phenomenon, there is another serious limitation in
optimization of Q, the misidentification phenomenon [14], which means that some de-
rived communities do not satisfy the weak community definition[10]. In other words,
these communities have sparser connection within them than between them which dis-
obeys the basic intuitive sense for a subnetwork to be a community. A toy example is
proposed in [24] and redrew as the right network in Figure 1. Then we consider to cal-
culate the value of matrix W . Since there are many different cases for the connection
among the three cliques, the resulting W is complicated and depends on different situa-
tions, so we will not show the close form here. Without loss of generality, we consider
the average case. Our model by soft thresholding (13) will rank all the node pairs by their
wi j values. Averagely the single link connection Cn and Cn−1 will be firstly set to zero
by choosing proper λ . And since l << n, the clique Cl will not be identified as a single
community. This demonstrates that in principle our regularized optimization model (11)
does not suffer from misidentification in this example.

5 Discussions
In summary, we propose a general mathematical programming framework to optimize

some modularity criteria under certain constraints, which provides a new visual angle for
the community structure problem. In this framework, we can unify several existing mod-
els as special cases of our framework by choosing different kinds of modularity criteria
and constraints. Then the difference and connections of these methods can be revealed
and further insights for improvement is allowed. Importantly, we propose a regularization
term as an additional objective function to identify community. In essence, community
identification is formulated as a multiple objective optimization problem. We want to
maximize the modularity function and minimize the number of the edges at the same
time. To achieve this, we introduce parameter λ to balance the two terms. Experiments
on two toy networks show that our new model is simple yet insightful for the community
identification problem. However there is plenty of room to improve and sharp our pilot
model. For example, the procedure to choose proper parameter λ should be carefully
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studied. Furthermore, we need to carefully study the post-processing algorithm to iden-
tify module after we solve the optimization model. Also experiments in large and real
complex networks are also needed. These are all our further research directions.
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