
A Transitive Reduction Approach to the
Precedence-Constrained Knapsack Problem

Byungjun You ∗1 Takeo Yamada †1

1Department of Computer Science, The National Defense Academy,
Yokosuka, Kanagawa 239-8686, Japan

Abstract We are concerned with the precedence-constrained knapsack problem (PCKP), which is
a knapsack problem defined on a directed acyclic graph (DAG). It is often the case that the original
problem includes redundant constraints, and by eliminating these we obtain a PCKP of (much)
smaller size. We show that such a reduction can be explained in terms of the ‘transitive reduction’
of the DAG associated with the original PCKP. Thus, we present a transitive reduction approach
to solve PCKP, where PCKP is first reduced in size by applying transitive reduction, and then the
reduced problem is solved using MIP solvers. In numerical experiments, we were able to solve
PCKPs with thousands of items within a few seconds on an ordinary computing environment.

Keywords Combinatorial optimization, Knapsack problem, Precedence constraints, Transitive
reduction, Directed acyclic graph.

1 Introduction
In this article we are concerned with a variation of the standard 0-1 knapsack problem

(KP, [6, 7]), which we call the precedence-constrained knapsack problem (PCKP, [9])
defined as follows. As in ordinary KP, we have n items to be packed into a knapsack of
capacity c. Each item j is associated with its weight w j and profit p j. In addition, some
pairs of items are ordered as follows. If (i, j) is thus ordered, we must have item i included
in the knapsack as a prerequisite to accept item j. Let E be the set of these ordered pairs.
Then, the problem is:

PCKP : maximize
n∑

j=1

p jx j (1)

subject to
n∑

j=1

w jx j ≤ c, (2)

xi ≥ x j, ∀(i, j) ∈ E (3)
x j ∈ {0,1}, ∀ j. (4)

Here, x j is a decision variable such that x j = 1 if item j is accepted, and x j = 0 otherwise.
Without much loss of generality we assume that problem data c and w j, p j (j = 1, . . . ,n)
∗byungjun.ryu@gmail.com
†yamada@nda.ac.jp

The Tenth International Symposium on Operations Research and Its Applications (ISORA 2011)
Dunhuang, China, August 28–31, 2011
Copyright © 2011 ORSC & APORC, pp. 94–99

are all positive integers. We also assume that w j ≤ c (j = 1, . . . ,n),
∑n

j=1 w j > c, since
otherwise the problem is trivial. PCKP is NP-hard, because without the precedence
constraints (3), it reduces to KP, which is already NP-hard.

Precedence relations arise naturally as the consequence of some logical/physical re-
quirements. For example, in project management activities are usually arranged in the
form of flow chart or network, and each activity can be initiated only when all the preced-
ing activities have been finished. Or, in open-pit mining [2] we can not remove a block
unless all the blocks lying immediately above have been removed. Mathematically, these
relations are represented in the form of (3). Then, if we wish to complete as many projects
as possible, or excavate as many blocks as possible in a fixed time period, we need to solve
PCKP.

PCKP can be described as a knapsack problem on a directed acyclic graph (DAG, [2])
G = (V,E) with vertex set V = {v1,v2, · · · ,vn} and edge set E ⊆ V ×V . Here, V represents
the set of items and node v j ∈ V is identified with item j. Also, we identify each of the
precedence relations with the corresponding arc in G. That is, (vi,v j) ∈ E implies that x j
can take value 1 only when item xi = 1. Thus, throughout the paper we assume that G is
acyclic, and G includes neither self-loops nor parallel arcs.

An important subclass of PCKP is the tree-knapsack problem (TKP, [3, 8]), where G is
a directed tree rooted at node v1. For PCKP in general, Samphaiboon et al. [9] presented
a dynamic programming algorithm to solve this problem to optimality. You et al. [10]
gave a reduction algorithm.

Small instances of PCKP can be solved using free or commercial MIP (mixed integer
programming) solvers such as Xpress-MP or CPLEX [5], since it is a binary integer
programming (BIP) problem. To solve larger instances, we propose to reduce the size
of the problem by identifying and removing redundant constraints included in (3). For
example, if we have x1 ≥ x2, x2 ≥ x3 and x1 ≥ x3, the last inequality is clearly redundant,
and thus can be dropped. In some PCKPs we may have many redundant inequalities,
and in such a case by removing all these constraints, we obtain a PCKP of the size much
smaller than the original, which we can solve using MIP solvers.

In graph theory, the reduced PCKP corresponds uniquely to the transitive reduction
[1, 4] of the DAG representation of the original PCKP. We present a criterion to identify
redundant constraints, and based on this give an algorithm to reduce the problem. We
evaluate this approach on a series of randomly generated instances, and see that for in-
stances with many constraints (as compared to the number of items), reduction approach
is quite prospective.

2 Transitive reduction of DAG and PCKP
For a directed graph G, its adjacency matrix A(G) = (ai j) is the binary matrix with

ai j = 1 if (vi,v j) ∈ E, and ai j = 0 otherwise. Similarly, the reachability matrix R(G) = (ri j)
is given by ri j = 1 if there exists a directed path from vi to v j, and ri j = 0 otherwise.
We note that rii = 1 for all vi ∈ V . We say that (vi,v j) ∈ E is redundant if there exists
an alternative path from vi to v j, other than the direct (vi,v j). Let E0 be the set of all
the redundant arcs in G, and we define E as the set of non-redundant arcs. Thus, we
have E = E \ E0, and removing all the redundant arcs from G, we obtain the subgraph
G = (V,E). This is the transitive reduction [1] of G.

A Transitive Reduction Approach to the Precedence-Constrained Knapsack Problem 95

Here, we note that for each redundant arc (vi,v j) ∈ E0, there exists a path from vi to
v j in G, and we have R(G) = R(G). Indeed, G is the smallest subgraph of G that keeps
reachability unchanged. Then, it is clear that inequality constraints (3) can be replaced
with

xi ≥ x j, ∀(vi,v j) ∈ E. (5)

In fact, E is the smallest subset of inequalities we need in solving the original PCKP. To
see this, let

X(E) = {(x j) ∈ R|V |+ |xi− x j ≥ 0,∀(vi,v j) ∈ E}

be the polytope defined by (3). X(E) is similarly defined for E. Then, we have the
following.

Theorem 1. X(E) = X(E), and no subset of E smaller than E satisfies this equality.

Thus, by eliminating redundant inequalities, PCKP is reduced from the original prob-
lem with |E|+1 constraints to the one with smaller |E|+1 constraints. If G is topologically
sorted in the sense that (vi,v j) ∈ E implies i < j, we can check if (vi,v j) is redundant by
the following.

Theorem 2. For a topologically sorted DAG, (vi,v j) is redundant if and only if

δi j :=
j−1∑

l=i+1

ailrl j ≥ 1. (6)

Thus, given the matrices A(G) and R(G), which can be build in O(|V |2) space and
O(|V |3) time, we can identify the set of redundant inequalities in O(|V ||E|) time.

Example 1. For the DAG of Figure 1, we have

A =

0 1 1 1 0
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 , R =

1 1 1 1 1
0 1 1 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 . (7)

From the matrices, we have δ13 = a12 · r23 = 1, δ25 = a23r35 +a24r45 = 1, and all other
δ′i js are 0. Thus we conclude that (v1,v3) and (v2,v5) are redundant.

3 Numerical experiment
We implemented the transitive reduction algorithm on a Dell Precision T7400 work-

station (CPU: Xeon X5482 Quad-Core × 2, 3.20GHz, RAM: 64GB) and conducted nu-
merical experiments for various types and sizes of instances. We compared our results
against the direct solution by CPLEX 12.2.

96 The 10th International Symposium on Operations Research and Its Applications

Figure 1: DAG for Example 1

3.1 Design of experiments
Random instances were prepared as follows. Weight w j and profit p j(j = 1,2, · · · ,n)

are distributed uniformly and independently over the integer interval [1,100], and we set
the knapsack capacity at c = 10n. DAGs are of two types: TYPE 1 and TYPE 2. In TYPE
1, we generate arc (vi,v j) with probability α for all pairs of nodes satisfying i < j. For
TYPE 2, this is limited to the pairs satisfying i < j ≤ i+ B, where B is the band-width
parameter and in this paper this is fixed at B = 100.

Next, for each maximal node v j , v1, we pick up node vi (i < j) at random and add arc
(vi,v j) to E. Thus, no maximal nodes remain in G other than v1. Similarly, we make all
nodes other than vn non-minimal. For a DAG, let its height and distance be the maximum
and minimum numbers of steps between v1 and vn, respectively. Then, Table 1 gives
a summary of the characteristics of TYPE 1 and TYPE 2 instances. Thus, TYPE 2 is
relatively ‘tall’ as compared to TYPE 1 instances, and TYPE 1 is relatively ‘wide.’

Table 1: Instance characteristics.

n
TYPE 1 TYPE 2

m height distance m height distance
1000 5212 37 5 9368 187 11
2000 20266 55 3 19433 336 22
3000 45068 72 4 29525 517 32

3.2 Exact solutions
We solve problems to optimality using CPLEX 12.2 directly (DIRECT), as well as

by the transitive reduction method (REDUCTION). In REDUCTION, we first reduce the
problem and then solve the reduced problem using CPLEX as well. Table 2 summarizes
the result of the experiments for TYPE 1 instances, and Table 3 is for TYPE 2. Here, we
show the number of redundant inequalities (#reduced) and the CPU times in seconds for

A Transitive Reduction Approach to the Precedence-Constrained Knapsack Problem 97

the DIRECT method (DIRECTsec) and REDUCTION method (REDUCTsec). Each row
is the average of 10 independent runs. When solved to optimality, both of DIRECT and
REDUCTION produced identical values. Thus, REDUCTION solves larger instances
much faster than DIRECT. This is especially the case for instances with larger α, where
we have larger number of constraints with higher percentage of redundancy.

Table 2: TYPE 1 results (c = 10n) as average over 10 instances.

α n m #reduced DIRECTsec REDUCTsec
0.005 1000 2899 239 0.727 0.613

2000 10365 2298 6.736 5.206
3000 22739 9068 37.944 23.825

0.010 1000 5215 1589 3.071 2.181
2000 20266 11363 26.181 9.070
3000 45068 30928 145.407 29.538

0.020 1000 9998 6114 6.753 2.530
2000 39977 31553 64.519 8.755
3000 89387 76346 245.460 19.431

0.040 1000 19786 16166 14.696 1.880
2000 79730 72191 146.359 6.424
3000 179494 168303 547.027 11.352

Table 3: TYPE 2 results (c = 10n, B = 100) as average over 10 instances.

α n m #reduced DIRECTsec REDUCTsec
0.05 1000 4739 1493 2.043 1.386

2000 9799 3096 6.690 4.538
3000 14817 4768 9.627 6.380

0.10 1000 9368 6528 3.069 1.147
2000 19433 13457 10.990 2.925
3000 29525 20624 22.107 4.540

0.20 1000 18933 16625 6.469 0.968
2000 39083 34338 28.781 1.582
3000 59139 52041 75.882 3.065

0.40 1000 38054 36317 17.505 0.446
2000 78326 74811 61.380 1.098
3000 118431 113089 170.680 2.044

4 Conclusion
We studied the PCKP, presented a criterion to identify redundant constraints, and

based on this gave an algorithm to reduce the problem size. The algorithm was imple-
mented in ANSI-C language, and numerical experiments were carried out to evaluate the

98 The 10th International Symposium on Operations Research and Its Applications

performance of the developed method. As a result, we were able to solve PCKPs with up
to 3000 items of various types within a few seconds in an ordinary computing environ-
ment. This method over-performed the direct solution approach by MIP solvers.

References
[1] A.V. Aho, M.R. Garey, J.D. Ullman, The transitive reduction of a directed graph, SIAM

Journal on Computing 1 (1972) 131-137.
[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithm, and Applications,

Prentice-Hall, 1993.
[3] G. Cho, D. X. Shaw, A depth-first dynamic programming algorithm for the tree knapsack

problem, INFORMS Journal on Computing 9 (1997) 431-438.
[4] D. Gries, A.J. Martin, J.A. Snepscheut, J.T. Udding, An algorithm for transitive reduction of

an acyclic graph, Science of Computer Programming 12 (1989) 151-155.
[5] IBM ILOG CPLEX 12.2, http://www-01.ibm.com/software/integration
/optimization/cplex-optimizer/, 2011.

[6] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer Verlag, 2004.
[7] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley,

New York, 1990.
[8] D. X. Shaw, G. Cho, The critical item, upper bounds and a branch-and-bound algorithm for

the tree knapsack problem, Networks 31 (1998) 205-216.
[9] N. Samphaiboon, T. Yamada, Heuristic and exact algorithms for the precedence-constrained

knapsack problem, Journal of Optimization Theory and Application 105 (2002) 659-676.
[10] B.-J. You, T. Yamada, A pegging approach to the precedence-constrained knapsack problem,

European Journal of Operational Research 183 (2007) 618-632.

A Transitive Reduction Approach to the Precedence-Constrained Knapsack Problem 99

