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Abstract We propose a simulation method for state space models which utilizes quasi-Monte
Carlo method with randomization aiming at good approximation of the probability distribution at
each time step. Numerical experiments shows our proposed method outperforms a traditional Monte
Carlo simulation method in the estimation of model likelihood.
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1 Introduction
State space modeling increases its popularity in wide range of applications. It is used

for several purposes, such as forecasting, smoothing, or parameter estimation. A tradi-
tional approach is known as Kalman filter, and several variants of it. On the other hand,
more computer intensive approach, so-called Monte Carlo filer, is also now available. See,
e.g. [4]. This work proposes an alternative for Monte Carlo filter by introducing quasiran-
dom point set, with aiming at obtaining a good approximation of the distribution with less
computational cost. This is probably most meaningful in parameter estimation problem.
When we try to find the estimate of some parameters in the model by maximum likelihood
method, we necessarily run the optimization algorithm repeatedly, which requires com-
putation of objective function, i.e. likelihood function. Hence we need fast and accurate
computation of the likelihood for the estimation of parameters. In this experimental study
we focus on the convergence speed of the likelihood computation.

In the following, Sec. 2 gives a short introduction to state space modeling and Monte
Carlo filter method. Sec. 3 proposes hybrid quasi-Monte Carlo method for state space
model, and Sec. 4 shows a numerical experiment result. Final section summaries the
work and gives some remarks.

2 State Space Model and Monte Carlo Filter
We consider a discrete time dynamical system described by equations:

X j = A(X j−1,v j), (1)
Y j = B(X j,w j), (2)
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for j = 1,2, . . ., where X j is an unobservable state variable taking a value on (a subspace
of) R l , and Y j is an observation on Rk. Random vectors v j ∈ Rd and w j ∈ Rc are
state noise and observation noise, respectively, and they are mutually independent. The
evolution of system is governed by the function A : Rl ×Rd → R l , while the observation
of system is done by the function B : Rl ×Rc → Rk. Another possible interpretation of
eq. (1) is to think of it as a kind of Markov chain whose transition probability is given by

P{X j = x j|X j−1 = x j−1} = P{A(x j−1,v j) = x j}. (3)

This interpretation leads to a Monte Carlo (MC) simulation algorithm, referred to
such as Monte Carlo filter, particle filter, or sequential Monte Carlo, for the system. More
specifically, we approximate the distribution Fj(x) of X j at step j by an empirical dis-
tribution F̂j(x) of {X(1)

j , . . . ,X(n)
j }. The sample {X(1)

j , . . . ,X(n)
j } is generated by eq. (1)

with random vectors {v(1)
j , . . . ,v(n)

j }, given the point set {X(1)
j−1, . . . ,X

(n)
j−1} at step j − 1.

It is necessary to give the initial point set {X(1)
0 , . . . ,X(n)

0 } following an appropriate initial
distribution at the first stage of simulation

After obtaining sample {X(1)
j , . . . ,X(n)

j }, we perform resampling to find the posteri-

or distribution given an observation y j. The weight of each point X(i)
j is given by its

likelihood

α(i)
j = r(K(y j,X

(i)
j ))

∣∣∣∣
∂K
∂y j

∣∣∣∣ , (4)

where K is the inverse function of B with respect to the second argument w, i.e., K(y,X) =
B−1(y,X), and r(w) is the probability density of w j (cf. [4]). We choose n points, each
X(i)

j with probability α(i)
j /∑n

i=1 α(i)
j , from {X(1)

j , . . . ,X(n)
j }, and such chosen point set is

used as sample at step j.
Among various applications of state space model (1, 2), it is of great interest to esti-

mate the model parameters, to say θ in general, which specify the probability distribution
of v j and w j from the observations y j, j = 1,2, . . .. A common approach to this end is
to utilize likelihood method. The log-likelihood l(θ) of the state space model (1, 2) is
approximated by MC as

l(θ) ≈ ∑
j

log

(
1
n

n

∑
i=1

α(i)
j

)
. (5)

The maximum likelihood estimate (MLE) can be found as the parameter value θ̂ which
maximizes (5). Since we apply an iterative optimization algorithm to find θ̂ maximizing
l(θ), we have to compute (5) with different θ values so many times, and often experiences
usual MC method is not sufficiently fast for our purpose. We propose a new method based
on Quasi-Monte Carlo integration in the next section.

3 Hybrid Quasi-Monte Carlo Methods
Quasi-Monte Carlo (QMC) method [1, 8, 9] has been recognized as a promising al-

ternative to MC in high-dimensional numerical integration, and begin to spread over new
application areas. Attempts to simulate a Markov chain in terms of quasirandom sequence
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are made by several authors [3, 5, 6, 7]. Among them we explore the algorithm named
array-RQMC (Randomized Quasi-Monte Carlo) in [5, 6] and propose a simplified one
combined with the idea of resampling for quasirandom points by [10] for the state space
model simulation.

The algorithm aims to give a good approximation for the (unknown) distribution
at each step. Denote the distribution of the state variable X j by Fj(x). MC method
gives an approximation F̂j(x) for Fj(x) by the empirical distribution of the point set
{X(1)

j , . . . ,X(n)
j } generated by (1) with random vectors {v(1)

j , . . . ,v(n)
j }. Applying QM-

C to the problem begins with replacing random vectors by uniformly distributed points
(quasirandom points) {u(1)

j , . . . ,u(n)
j }. with special care in order to achieve high unifor-

mity of point set {X(i)
j }n

i=1.
We employ two kinds of technique to this end. First one is sorting introduced in

array-RQMC [6], which proposes to sort the ( j − 1)-th step points {X(1)
j−1, . . . ,X

(n)
j−1} in

terms of an appropriate ordering function h(x), i.e., to hold h(X(1)
j−1) ≤ ·· · ≤ h(X(n)

j−1). The
ordering function plays a crucial role in making the algorithm efficiently work. Although
it is difficult to give general guidelines how to choose a good ordering function, we can
often obtain a function showing good performance in practice. Second one is allocation
of quasirandom points to random vectors. Quasirandom point set is originally introduced
to compute a high-dimensional integral efficiently and have to be appropriately assigned
to integration variables. For instance, log-likelihood (5) contains the average of weights
α(i)

j and this average can be considered as the expectation of them with respect to X j,
more specifically, some relevant components of X j. Since it is generated by v1, . . . ,v j,
we have to find which components of them directly generate the relevant components of
X j. The allocation have to be done by carefully tracing the relation between variables.
An example is shown in next section.

Another ingredient of our filter algorithm is resampling from the point set {X(1)
j , . . . ,

X(n)
j } based on the likelihood α(i)

j . Resampling on a quasirandom point set is studied in
[10], and shown to give the convergence to target distribution. Eventually, our algorithm
is given in the following.

HQMC filter algorithm
1. Generate X(1)

0 , . . . ,X (n)
0 following an initial distribution.

2. Sort X(1)
0 , . . . ,X (n)

0 by increasing order of the value h(X(i)
0 ) and renumber them.

3. Generate randomized uniform quasirandom point set {u(1)
j , . . . ,u(n)

j }t
j=1, and allo-

cate them in appropriate way to {v(1)
j , . . . ,v(n)

j }t
j=1, after transformation if neces-

sarily.
4. For j = 1, . . . , t do the following computation.

(a) Compute X(i)
j = A(X(i)

j−1,v
(i)
j ).

(b) Calculate the weight α(i)
j , then resampling each X(i)

j with probability

α(i)
j /∑n

i=1 α(i)
j to obtain {X(1)

j
′
, . . . ,X(n)

j
′
}.

(c) Sort {X(1)
j

′
, . . . ,X(n)

j
′
} by increasing order of the value h(X(i)

j
′
) and renumber
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them to eventually obtain {X(1)
j , . . . ,X(n)

j }

After running the algorithm, we compute the log-likelihood (5). We usually compute
it several times using independently randomized quasirandom point sets to obtain the
error estimate. This procedure is called randomized QMC (see [8] for details).

4 Numerical Example
A target tracking problem (cf. [2]) is utilized to illustrate how to apply HQMC method

to state space model simulation. The model is described by following equations:

X j = AX j−1 +v j =




1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1







x j−1
y j−1
ẋ j−1
ẏ j−1


+v j, (6)

Y j = b(X j)+w j =

( √
x2

j + y2
j

tan−1(y j/x j)

)
+w j, (7)

where X j = (x j,y j, ẋ j, ẏ j)
⊤ is the actual but unobserved position (x j and y j) and velocity

(ẋ j and ẏ j) of the target object on the two-dimensional plane, Y j = (r j,δ j)
⊤ is observed

position in polar coordinates at time j, see Fig. 1. In state equation (6) the matrix A evolves
the the state X j−1 to X j by time step ∆ with additive Gaussian noise v j ∼ N (0,Σv), while
the observation is done by nonlinear transformation b(x) with additive Gaussian noise
w j ∼ N (0,Σw) in (7).

O

δ

r

(x,y)

(ẋ, ẏ)

Figure 1: Illustration of target tracking problem.

Our experiment focuses on comparing MC and QMC computation of likelihood from
the viewpoint of convergence speed. First artificial observations, y1, . . . ,yt , are generated
as test data set. They are produced following (6) with fixed model parameters, Σv =
diag(σ2

p ,σ2
p ,σ2

v ,σ2
v ), and Σw = diag(σ2

r ,σ2
δ ).

86 The 10th International Symposium on Operations Research and Its Applications



The computation of the weight α(i)
j in (4) of each sample point X(i)

j =(xi j,yi j, ẋi j, ẏi j)
⊤,

at each step j has an explicit form for our model:

α(i)
j =

1
2πσ ′

rσ ′
δ

exp





−

(
r j −

√
x2

i j + y2
i j

)2

2σ ′2
r

− (δ j − tan−1(yi j/xi j)
2

2σ ′2
δ





. (8)

It should be noticed this α j contains only (x j,y j). Since (x j,y j) is generated by (x j,y j, ẋ j−1,
ẏ j−1), it depends directly on the random variables (v1 j,v2 j,v3, j−1,v4, j−1). Base on this
relation, we allocate four-dimensional quasirandom point u j to (v1 j,v2 j,v3, j−1,v4, j−1).
We choose the ordering function as h(x) = x+ y.

For the sake of error estimation we carry out the computation of it several times to
obtain estimates, l1(θ ′), . . . , lm(θ ′). Then calculate the standard deviation of them as fol-
lows.

s(l) =

(
1

m−1

m

∑
k=1

(lk(θ ′)− l̄(θ ′))2

)1/2

, where l̄(θ ′) =
1
m

m

∑
k=1

lk(θ ′). (9)

The artificial observations are generated after real parameters σp =
√

0.05, σv =
√

5,
σr = 2, and σδ = 2π/180. We run HQMC filter for them with the model parameters set
to the same as real parameters. Fig. 2 shows the convergence speed of standard error for
MC and HQMC, where horizontal axis shows the number of points n at each time step,
and vertical axis shows the standard error s(l)/l̄. Comparing MC and HQMC, we observe
several times faster convergence of HQMC.
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Figure 2: Convergence of standard error s(l)/l̄ of MC and HQMC.

5 Concluding Remarks
We proposed a new simulation method using quasirandom point set for state space

models. Numerical experiment shows faster convergence of the proposed method than
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traditional Monte Carlo. One question probably arises about the convergence rate: QMC
usually shows the convergence rate of O(1/n), where n is the number of sample points.
In our experiments the convergence rate of HQMC is observed to be less than O(1/n),
and almost the same rate as MC. A question on the possibility or impossibility to improve
the convergence rate is left to be investigated in a future work.
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