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Abstract In this paper, a non-monotone adaptive trust region method for the system of non-linear
equations is proposed, in part, which is based on the technique in [9]. The local and global conver-
gence properties of non-monotone adaptive trust region method are proved under favorable condi-
tions. Some numerical experiments show that the method is effective.

Keywords Trust region method; Global convergence; Nonlinear equations; Non-monotone line
search technique

1 Introduction
We consider the nonlinear equation system

F(x) = 0, (1)

where F : Rn→Rm is a set of continuously differentiable functions. Throughout the paper,
we assume that the solution set of (1) is nonempty and denoted by X∗. In all cases, ‖ · ‖
denotes the Euclidian norm of vectors or its induced matrix norm. Let F ′(x) denote the
transpose of the Jacobian of F(x), i.e., F ′(x) = (F ′1(x),F

′
2(x), · · · ,F ′m(x))T .

A problem which is closely related to (1) is the following minimization problem

min
x∈Rn

ϕ(x) =
1
2
‖F(x)‖2. (2)

This problem is called the least square problem. Obviously, x∗ solves (1) iff x∗ solves (2)
when X∗ is nonempty.

(1) and (2) have many applications in engineering, such as nonlinear fitting, parameter
estimating and function approximating. At present, a lot of algorithms have been pro-
posed for solving these two problems, for examples, Gauss-Newton method, Levenberg-
Marquardt method, trust region method, etc., see [1, 2, 3, 4, 5]. These algorithms are
super-linearly convergent if F ′(x∗) is non-degenerate. Here we are interested in trust
region method since it has strong convergence and robustness. For the traditional trust
region methods, at each iterative point xk (non-stationary point), the trial step is usually
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obtained by solving the following trust region subproblem




min
d∈Rn

φk(d) =
1
2
‖F(xk)+F ′(xk)d‖2

s.t. ‖d‖ ≤4k.
(3)

It is well known that the trust region methods are globally convergent under suitable
conditions and super-linearly convergent under the condition that F ′(x∗) (x∗ is a solu-
tion of (1.1)) is non-degenerate. For simplicity, we omit the subscript and drop the term
1
2
‖F(x)‖2 in (3). Then (3) is equivalent to the following problem





min
d∈Rn

g(xk)
T d +

1
2

dT Hkd

s.t. ‖d‖ ≤4k,
(4)

where g(xk) denotes F ′(xk)
T F(xk), Hk denotes F ′(xk)

T F ′(xk) and4k is the trust radius. A
merit function is normally used to test whether the trial step is accepted or the trust radius
needs to be adjusted. Comparing with quasi-Newton methods, trust region methods con-
verge to a point which not only is a stationary point, but also satisfies second-order neces-
sary conditions. Because of its strong convergence and robustness, trust region methods
have been studied by many authors[6, 7, 8, 5]. J.Zhang and X.Zhang [9] combine the
upper trust region subproblem with non-monotone technique to present a non-monotone
adaptive trust region method and study its convergence properties. Based on the technique
of some of theirs, we propose a new non-monotone adaptive trust method for solving (1).
For nonlinear equations, to the authors’ knowledge, the global convergence is due to
Griewank [10] for Broyden’s rank one method.

In this paper, we solve (1) by the method of iteration and the main step at each iteration
of the following method is finding the trial step dk. Let xk be the current iteration. The
trial step dk is a solution of the following problem





min
d∈Rn

g(xk)
T d +

1
2

dT Bkd

s.t. ‖d‖ ≤4k,
(5)

where Bk is a safely positive definite matrix based on Schnabel and Eskow [12] modified
cholesky factorization, Bk =Hk+Ek, where Ek = 0 if Hk is safely positive definite, and Ek
is a diagonal matrix chosen to make Hk positive definite otherwise, and4k = cp‖gk‖β Mk,
0 < c < 1, Mk = ‖B−1

k ‖, and p is a nonnegative integer.
The remainder of the paper is arranged as follows. In Section 2, the algorithm model

is presented. In Section 3, the global convergence properties are studied. Numerical result
in Section 4 indicate that the algorithm is very efficient. Finally some concluding remarks
are addressed in Section 5.

2 Algorithm model
In this section, we give our algorithm for solving (1). Firstly, some definitions are

given. At point xk, let

‖Fl(k)‖= max
0≤ j≤m(k)

{‖Fk− j‖}, k = 1, 2, . . . ,
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where m(k) = min{M, k}, M ≥ 0 is an integer constant and denote ϕl(k) =
1
2
‖Fl(k)‖2.

Then we define the actual reduction as

Aredk = ϕ(xk +dk)−ϕl(k),

the predict reduction as

Predk = φk(dk)−ϕ(xk) = g(xk)
T dk +

1
2

dT
k Bkdk,

where dk is the solution of (5), and the ratio of actual reduction over predict reduction as

γk =
Aredk

Predk
.

Now the algorithm is given as follows.
ALGORITHM MODEL

Initial: choose constants ρ, τ, c ∈ (0,1), p = 0, ε > 0, M ≥ 0, x0 ∈ Rn. Let k := 0;
Step1: If ‖gk‖< ε , stop.
Step2: Compute dk by solving (5) and calculate m(k), Fl(k), predk and γk. If γk < ρ , then
p := p+1, go to Step2. Otherwise, go to Step3.
Step3: xk+1 = xk +dk, generate Bk+1, set p = 0,k := k+1, go to Step1.

Remark 1. (i)Bk can be obtained by quasi-Newton iterate formula.
(ii)In this algorithm, the procedure of "Step2" is named as inner cycle.
(iii)If M = 0, this algorithm reduces to ......

3 Global convergence
In this section, we discuss the convergence properties of the algorithm. Before we

address some theoretical issues, we would like to make the following assumptions.
ASSUMPTION 3.1.

(i)F(x) is twice continuously differentiable;
(ii){xk} is a bounded sequence.
By Assumption 3.1 there exists M > 0 such that

‖Bk‖ ≤M, ∀ k.

Based on Assumption 3.1, we have the following lemma.

Lemma 1. [11] Suppose that Assumption 3.1 holds. Then

−Predk ≥
cp

2‖Bk‖
‖gk‖2, p = 0, 1, . . . .

Lemma 2.
Predk ≤−

1
2
‖gk‖min{αk,‖gk‖/‖Bk‖}.
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Proof. By the definition of dk, we know that for any α ∈ (0,1)

Predk = φk(dk)−ϕ(xk)

≤ φk(−α
gk

‖gk‖
)−ϕ(xk)

= −α‖gk‖+
α2gT

k Bkgk

2‖gk‖2

≤ −α‖gk‖+
1
2

α2M.

Thus, together with Lemma 1, we have

Predk ≤ min
0≤α≤1

{−α‖gk‖+
1
2

α2M}

≤ −1
2
‖gk‖min{αk,‖gk‖/‖Bk‖}

The following lemma guarantees that the non-monotone adaptive trust region algo-
rithm does not cycle infinitely in the inner cycle.

Lemma 3. Suppose that Assumption 3.1 holds. The algorithm is well defined, i.e., the
algorithm does not cycle in the inner cycle infinitely.

Proof. First, we prove that when p is sufficiently large, it holds that

ϕ(xk +dk)−ϕ(xk)

Predk
≥ ρ. (6)

Let di
k be the solution of (5) corresponding to p = i at xk and Predk(i) be the predict

reduction corresponding to p = i at xk. It follows from Lemma 1 that

−Predk(i) ≥
ci

2‖Bk‖
‖gk‖2.

So,

|ϕ(xk +dk)−ϕ(xk)

Predk
−1| ≤ O(‖di

k‖2)

(ci/2‖Bk‖)‖gk‖2 ≤
O(‖αk‖2)

(ci/2‖Bk‖)‖gk‖2 → 0, i→ ∞,

which implies that (6) holds for p sufficiently large.
The definition of the algorithm implies that

γk =
ϕ(xk +dk)−ϕ(xl(k))

Predk
≥ ϕ(xk +dk)−ϕ(xk)

Predk
.

Therefore, when p is sufficiently large, γk ≥ ρ . This implies that the algorithm does not
cycle in the inner cycle infinitely.

Lemma 4. Suppose that Assumption holds and {xk} is generated by the algorithm. Then
we have {xk} ⊂ L(x0).
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Proof. We prove the result by induction. The result evidently holds for k = 0. Assume
that xk ∈ L(x0), for k ≥ 0. By the definition of the algorithm, we get

γl(k) ≥ ρ > 0.

Then we get
ϕl(k) ≥ ϕ(xk +dk)+ρPredk ≥ ϕ(xk +dk). (7)

By l(k)≤ k, ‖Fl(k)‖ ≤ ‖F0‖, then it follows from (7) that

‖Fk+1‖ ≤ ‖F0‖,∀ k.

i.e.,
xk+1 ∈ L(x0),

which completes the proof.

Lemma 5. Suppose that Assumption holds. The {‖Fl(k)‖} is not increasing monotoni-
cally and is convergent.

Proof. From the definition of the algorithm, we have that

‖Fl(k)‖ ≥ ‖Fk+1‖, ∀ k. (8)

Now we proceed the proof in the following two cases.
(i) k ≥M. In this case, from the definition of fl(k) and (8), it holds that

‖Fl(k+1)‖= max
0≤ j≤n(k+1)

‖F(xk+1− j)‖ ≤ ‖Fl(k)‖.

(ii) k < M. In this case, by induction, we can prove that

‖Fl(k)‖= ‖F0‖.

So the sequence {‖Fl(k)‖} is not increasing monotonically. From Assumption 3.1(i) and
Lemma 4, we know that {‖Fk‖} is bounded. Hence, {‖Fl(k)‖} is convergence.

Theorem 6. Suppose that Assumption 3.1 holds. If ε = 0, then the algorithm either stops
finitely or generates an infinite sequence {xk} such that

lim
k→∞
‖gk‖= 0.

Proof. We prove the theorem by contradiction. Assume that the theorem is not true. Then
there exists a constant ε0 such that

‖g(xk)‖ ≥ ε0, ∀ k.

By Assumption 3.1 and the definition of Bk imply that there exists M > 0 such that

‖B−1
k ‖ ≥M (9)
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Therefore, by Assumption 3.1, Lemma 1 and (9), there exists a constant a > 0 such that

predk ≥ acpk , (10)

where pk is the value of p at which the algorithm gets out of the inner cycle at the point
xk.

From Step2, Step3 and (10), we know that

ϕl(k) ≥ ϕ(xk +dk)+ρacpk .

So
ϕl(k+1) ≤ ϕl(l(k))−ρacpl(k) . (11)

By Lemma 5 and (11), we deduce that

pl(k)→ ∞.

The definition of the algorithm implies that d′l(k) which corresponds to the following sub-
problem is unacceptable:





min
d∈Rn

predl(k) = gT
l(k)d +

1
2

dT Bl(k)d

s.t. ‖d‖ ≤ cpl(k)−1Ml(k)‖gl(k)‖=
4l(k)

c

i.e.,
ϕ(xl(k)+d′l(k))−ϕl(l(k))

predl(k)
< ρ. (12)

It follows from the definition of ‖Fl(k)‖ that

ϕ(xl(k)+d′l(k))−ϕl(l(k))

predl(k)
≥

ϕ(xl(k)+d′l(k))−ϕl(k)

predl(k)
.

we have that when k is sufficiently large, the following formula holds:

ϕ(xl(k)+d′l(k))−ϕl(k)

predl(k)
> ρ.

This contradicts (12). The contradiction shows that the theorem is true.

Remark 2. Theorem 6 says that the iterative sequence {xk} generated by our algo-
rithm satisfies ‖g(xk)‖ → 0. If x∗ is a cluster point of {xk} and F ′(x∗) is non-degenerate,
then we have ‖F(xk)‖ → 0. This is a standard convergence result for nonlinear equa-
tions. At present, there is no algorithm which has the property that the iterative sequence
generated by the algorithm satisfies ‖F(xk)‖ → 0 without the assumption that F ′(x∗) is
non-degenerate.
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Table 1: Numerical results of some test problems.
Numerical experiments Trad NMAdapt

Prob Dim I F G 1
2‖F(x∗)‖2 I F G 1

2 ‖F(x∗)‖2

Rosenbrock 2 23 34 27 0.44-16 15 28 21 0.22-17
Powell singular 4 11 19 16 0.31-7 10 17 14 0.65-7

Powell badly scaled 2 104 163 123 0.46-9 163 213 186 0.71-8
Wood 4 45 76 59 0.74-9 31 59 44 0.47-12

Helical valley 3 19 30 23 0.65-14 12 21 17 0.44-14
Waston 12 126 179 143 0.23-6 62 117 87 0.26-7

Brown almost linear 30 10 17 14 0.73-13 24 36 29 0.15-13
Discrete boundary value 10 12 21 15 0.59-8 16 29 22 0.63-10

Discrete integral equation 10 5 9 7 0.98-16 5 8 6 0.98-16
Trigonometric 30 149 243 183 0.89-5 85 142 113 0.93-5

Variably dimensioned 10 121 174 152 0.17-10 98 166 129 0.26-9
Broyden tridiagonal 10 73 125 102 0.11-10 73 125 102 0.68-16

Broyden banded 30 21 32 25 0.15-9 14 26 19 0.11-13

4 Numerical Experiments and Conclusions
In this section, in order to see the efficiency of our method, numerical results are re-

ported on some classical problems. The algorithm is implemented in Fortran 90, and in
Compaq Visual Fortran 6.5 environment in PC. The test problems are created by mod-
ifying the problems given in [13] and have the same form as in [14]. The subroutine
solving trust region subproblem was provided by Jorge J. Moré. x0 is suggested by Moré,
Garbow and Hillstrom in [13]. The stopping criterion used is ‖gk‖< ε , where ε = 10−8.
For comparison, the quadratic subproblems are solved precisely and all of the algorithms
use the same subroutine to solve the quadratic subproblems. The traditional trust region
method used here is the method described in [8] and Bk is obtained by the BFGS update.
The radius of the trust region in [8] is determined as follows:

4k+1 =





c3‖sk‖+ c44k

2
, i f r < c2,

(1+ c1)4k

2
, otherwise.

where η = 0.1,c1 = 2,c2 = 0.25,c3 = 0.25 and c4 = 0.5. For the non-monotone adaptive
trust region method, Bk is also obtained by the BFGS update. In the computation, we
chose η = 0.1,c = 0.5,β = 0.6. However, we found that the choice of c has little impact
on the computational efficiency. The detailed results are summarized in the following
Table 1. The columns of the table have the following meaning:

Prob. : the name of the test problem in Fortran;
Dim. : the dimension of the problem;
Trad. : the traditional trust region method in [8];
NMAdapt. : the non-monotone adaptive trust region method;
In columns 3-7, I, F and G represent the numbers of iteration, function evaluations

and gradient evaluations.
From numerical result of the table 1., we easily know that the proposed method is

robust in most occasion. However, in some case (such as Powell badly scaled, Brown
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almost linear, Discrete boundary value,etc), the classical method is more efficient. The
result of the table show that the proposed method is rather efficient.

In this paper, Based on [9], we give a modified algorithm for solving nonlinear equa-
tions. Theoretical analysis shows that the method possesses global convergence and the
numerical results show that the method is very efficient.
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