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Abstract  The main objective of optimizing any chemical process is to find the best operation 

conditions that can maximize the production of the most valuable products and minimize 

operating costs with respecting the operational and environmental constraints. Uncertainty or 

variations in some parameters such as demand and supply of each processing unit or product 

prices can seriously affect the optimization results and lead to inefficient operation. Many 

techniques of stochastic programming were proposed to handle the effect of variations in 

process parameters in order to determine a robust operation conditions; however, applications 

of post-optimality analysis has received less attention especially in process engineering. This 

work discusses the important of post-optimality analysis and shows how it can be used to 

investigate the effect of such variations on the optimal solution of a petrochemical complex 

that is formulated as a LP model.  The general objective of this study is to try to bridge the gap 

between the theory and practice of the post-optimality analysis in process engineering. This 

work attempts to use a modified method of post-optimality analysis that jointly use sensitivity 

relations and stability region calculations to provide  the decision maker  in petrochemical 

complex with valuable and  easy-to-use information that help in handling the effect of 

variation in some process parameters. The results of this study can help the decision maker to 

identify sensitive parameters that need accurate estimate or intensive monitoring.  

 

1  Introduction  

Optimization of production levels is an essential task to maximize company profit 

margins and to remain in the competitive market especially with high fluctuating in 

the prices of raw materials and products in addition to variations in the supply and 

demand. Many models of petrochemical processes and optimization techniques were 

proposed to handle this task [1]; however, it was recognized that optimization results 

can suffer from the existence of uncertainty in model parameters due to inaccurate 

estimates of some parameters. In addition, variations in input data, such as supply and 

cost of raw materials, can easily affect the process profitability. Many studies were 

conducted to understand the effect of such uncertainty or variation on the optimized 

model.   There are two general approaches for dealing with the existence of 

uncertainty in optimization problem: incorporating the uncertainty directly into the 

optimization problem formulation, such as stochastic programming, and analysis of 
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the effect of uncertainty on the optimal solution, post-optimality analysis.   

 

Many techniques of stochastic and fuzzy programming were proposed to handle 

the effect of variation in process parameters in order to determine a robust operation 

conditions [2]. In the other hand, applications of post-optimality analysis have 

received less attention especially in refinery industry. Post-optimality analysis can 

help the decision maker to determine how much actual values of parameters may 

differ from the estimates used in the model before the optimal results become 

irrelevant.  Generally, post-optimality analysis can provide the decision-maker with 

valuable information about sensitive parameters and constraints. Despite its value, 

applications of the post-optimality analysis (e.g., in production planning) have 

received less attention compared with stochastic programming. This may be due to 

the challenge of studying the effect of simultaneous variations in the model 

parameters. In addition, current state-of-art post-optimality analysis methods for 

different linear optimization problems (e.g., LP and MILP) are rarely used due to the 

high computational complexity. 

 

In this project, we showed how the post-optimality analysis, mainly stability 

analysis, can be conducive to the decision maker in any process industry. A stability 

analysis technique, modified tolerance approach, is applied to the petrochemical 

complex in order to demonstrate the use of such analysis and to determine sensitive 

parameters that need accurate estimate or intensive monitoring. Moreover, the 

approach computes the stability limits (allowable variation ranges) of coefficients of 

objective function and right-hand-side of LP model to help the decision maker to 

maintain efficient plant operation.  

 

2  Post-optimality analysis of LP model 

After the optimal solution has been computed for a given model, it is important to 

know how the solution behaves under different variations in problem parameters. 

Sensitivity analysis and stability analysis are used to evaluate the effects of variations 

on the optimal solution or basis of the LP problem. Consider a LP problem in form: 

 

Max { P=c
T
x : Ax  b,  x 0,  xR

n
} (1) 

Sensitivity analysis is usually associated with the determination of the values of the 

Lagrange multipliers, , that describe  the change in the optimal solution with 

respect to the variations  in  RHS coefficients. The sensitivity relations are 

important and useful for the decision maker, but the major challenge is to determine 

when they are valid.  For example, the Lagrange multiplier, i, presents the increase 

in the optimal value for a maximization problem when the associated RHS 

coefficient, i.e., bi, is increased by one unit; however, we do not know by how much 

the coefficient can be increased under simultaneous variations in vector b before the 

optimal basis changes and the value of the Lagrange multiplier becomes invalid. This 

shows the importance of computing stability    limits for each coefficient under 
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simultaneous variations and within which the optimal basis remains unchanged. 

 

Figure 1: Obtained stability limits inside the stability cone. 

During the last few decades, many stability approaches have been proposed, for 

variation in parameters of LP [3]. To date there is no single approach that dominates. 

In contrast to other approaches, the tolerance approach leads to easy-to-use results 

and considers simultaneous and independent variation in the problem parameters 

[3,4]. It basically depends on optimality conditions and uses the concept of basic and 

non-basic variables to modify matrix A at each iteration. In this study, the modified 

tolerance approach proposed by Al-Shammari [5] is used to determine the stability 

ranges. The proposed method provides a new perspective on the problem and has two 

steps for computing the stability region or limits.  First, it defines the entire stability 

region as a cone and studies the relation between the sensitivity information, 

Lagrange multipliers, and model parameters. Second, it determines maximum 

stability limits presented by the maximum rectangular parallelepiped or hyperbox 

that can be built inside the cone. This hyperbox offers flexible and easy-to-use 

allowable variation limits as shown later on for variation in objective coefficients, i.e. 

prices or raw materials and products. 

 

To demonstrate the approach, consider problem (1) that has a unique optimal 

solution. To define the entire stability region or stability cone for variations in the 

coefficients of the objective function, duality information or Lagrange multipliers are 

used: 
1 A

T*

b AcλP  (2) 
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where AA  is the matrix of active constraints. By introducing the perturbations vector, 

c
T
: 

1 A

TT
Accλ )(

'   (3) 

by using the non-negativity  condition on the optimal solution, there is no change in 

optimal solution if  0' λ . By substituting and rearranging: 

λAc A

T  1
 (4) 

This inequality relation represents the stability region. This stability region can be 

defined as a stability cone because it satisfies the definition of a cone. In other words, 

the optimal solution and basis (not objective value) remain optimal under any scalar 

positive multiplication in the objective function. The solution remains optimal for 

any variations that satisfy equation (4). The stability cone is shown in Figure 1 for a 

maximization problem with two variables. Next step is defining the largest possible 

stability ranges starting with computing ordinary (individual) stability limits for ci 

as follows:  

)0:min()0:max(
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(5) 

where h and g are indices of objective coefficients and constraints, respectively.  In 

Figure 2, the ordinary stability limits of the coefficient ci are the intersections 

between the cone's constraints and ci axis.  The main challenge in LP stability 

analysis is the presentation of this cone to the decision maker in a simple and useful 

way, especially for simultaneous variations. The most useful approach is to construct 

the largest possible hyperbox inside the cone. Extension of stability analysis for 

simultaneous variations is discussed in details in Al-Shammari
 
[5]. 

 

For variations in the RHS coefficients, a similar stability analysis is employed for 

the dual problem: 

min  { T
b : T

A  c
T 

&  0} (6) 

to determine the variation limits before the optimal basis changes. In this analysis the 

optimal solution and slack variables are used in the same manner as the Lagrange 

multipliers were used in the variations analysis of vector c. 

 

3  Case study: Petrochemical complex consists of seven 

plants 

The petrochemical complex that is used as a case study consists of seven  plants: 

an ethylene plant, an ethylene dichloride (EDC) plant, a vinyl chloride monomer 

(VCM) plant, a polyvinil chloride (PVC) plant, and three different polyethylene 

plants (LDPE, HDPE, and LLDPE)  as shown in the  model representation of the 
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site in Figure 2. The raw material for this complex is ethane which used to produce 

ethylene. Small quantities of some side-product hydrocarbons, such as propane, 

butane, and gasoline, are also produced from the ethylene plant. Produced ethylene 

can be delivered as a main raw material to four plants: LLDPE, LDPE, HDPE, and 

EDC, and/or exported based on demand and economics. The operation of the VCM 

plant depends on the production and price of EDC and its production can be exported 

or used to produce PVC. Detailed description of the plants and different technologies 

used in processing are presented in Meyers [6]
 
and Rudd et al. [7]; and prices of raw 

materials and products are obtained from ICIS [8]. 

 

The optimization model of petrochemicals production is formulated as a LP 

problem: 

 

0

.

max







x

bxA

bxA
ts

xc

eqeq

ineqineq

T

 

where xR
n
  presents the production flow rate per day. The objective coefficients 

vector, c,  presents the price of products and/or raw materials,   right hand side 

vector, b, may presents the demand and  supply, and   matrix A usually describes   

plant specifications   such as production yields. 

 

The objective function of this problem is to maximize the net profit defined as 

the difference between sales revenue and total production costs for each product as 

follows: 

 

Max    net profit = (sales revenue - cost of raw materials - operating costs)         

The problem constraints include inequality, equality and non-negativity 

constraints. The equality constraints mainly represent the mass balance around each 

plant and the inequality constraints represent the limitations of the process or the 

products, e.g., plant capacity and supply of raw materials.  

 

4  Results and discussion 

 

The petrochemical complex problem was solved using Matlab and the maximum 

profit was found to be 1,111,420 dollars per day without considering the costs of 

maintenance, storage, transporting and also fixed costs. Optimal solutions of key 

process variables and production levels are shown in Table 1. All productions of EDC 

Application of Post-Optimality Analysis in Process Engineering 63



 

 

and CVM are transported to the next plant to produce a more valuable product, PVC. 

Moreover, HDPE is not produced because is relatively non-profitable comparing 

with LLDPE and LDPE.  

 

Figure 2:  Model representation of petrochemical complex 

 

Table 2 presents the results obtained from stability analysis of the objective 

coefficients. It shows the allowable range of price changes for raw material and each 

product within which obtained optimal production levels, shown in table 1, remain 

optimum. In other words, the optimal solution would change if the price of HDPE 

increased by more than 389.7 $/ton and the complex should start producing HDPE 

because it became relatively more valuable.  Other useful information can be 

obtained from the data show in Table 2. Such information can help the decision 

maker to understand the interaction between production levels and other factors (e.g., 

prices); and determine when the process need to be re-optimized.   

 

Obviously, some parameters have infinite limits in one direction of changes 

because they reached the maximum production limits, such as PVC, and any increase 

in their prices would not affect the solution. The optimal production levels are 

sensitive to simultaneous changes in prices of EDC, VCM, and PVC. 

 

In contrast, individual stability limits for individual variations is greater than 

those for simultaneous variations since the obtained stability range for each 

parameter decreases with increasing the number of uncertain parameters.  Presented 

limits of simultaneous variation were obtained using same   weighting factor (ki=1) 
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for all parameters in Table 2; however, different weighting factors can be used based 

on the relative important or frequent change of each parameters. Analysis and results 

obtained for variations in ethane and ethylene prices and in RHS coefficients (e.g. 

supply and demand of materials and capacity constraints) will be discussed and 

presented in the extended paper. 

 

5  Conclusion 

This study presents the application of post-optimality analysis to a simplified 

process engineering problem formulated as LP problem, in order to investigate the 

effect of uncertainty or variation in model parameters, mainly objective coefficients 

on the optimal production levels. Modified tolerance approach was used to compute 

the allowable variation limits, for individual and simultaneous variations, within 

which the operation levels remain optimum. The main objective of the obtained 

results is to supply the decision maker in the plant with useful and easy-to-use 

information that can help to understand the interaction between production levels and 

other factors (e.g., prices) and to enable effective use of sensitivity information such 

as Lagrange multipliers. 

 

 

Table 1: Optimal production levels of main variables. 

 

Selected  

variables 

Molar flow rate 

Kmol/day 

Selected  

variables 

Production 

rate 

ton/day 

 

Ethane imported 43100 EDC exported 0 

Ethylene 

produced 50,000 EDC to VCM 250.0 

Ethylene 

exported 10,000 VCM exported 0 

Ethylene to 

LLDPE 19090 VCN to PVC 240.0 

Ethylene to 

HDPE 0 PVC exported 230.0 

Ethylene to 

LDPE 18320 LLDPE 520.0 

Ethylene to EDC 2590 HDPE 0 

  LHPD 500 
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Table 2: Stability limits of individual and simultaneous price variations of some 

variables. 

 

Selected  

variables 

ci 

$/ton 

Individual stability 

limits, $/ton 

Simultaneous 

stability limits, $/ton 

lower upper lower upper 

 

LLDPE 1530.0 -379.8 65.6 -195.8 52.8 

HDPE 1124.0 -1124.0 389.7 -1124.0 195.8 

LDPE 1630.0 -105.4 Inf -52.8 Inf 

      

EDC 470.0 -470.0 43.1 -470.0 22.4 

VCM 573.0 -573.0 92.0 -573.0 22.4 

PVC 1720.0 -94.8 Inf -22.4 Inf 
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