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Abstract  Two points are definitely different between network models in systems biology 

and those in engineering fields. One is that most network models (structures) in biology are 

not static but change depending on external conditions, and the other is that the models 

including unmeasured variables frequently emerged so as to measure the variables under the 

conditions with as less perturbation to the organism as possible. To consider the two points 

specific to systems biology, we have designed two methods by statistical and 

symbolic-computation approaches, respectively. Here, we will describe the methods with 

their merits and pitfalls. 
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1 Introduction 

Huge information on most molecules in a cell, which can be measured by 

recently developed technologies such as microarray and deep sequencer, provides a 

chance to build and investigate the behaviors of many molecules in systems biology. 

In addition, recent advances of the computer performance and the improvement of 

computational algorithms facilitate the study of a large scale of molecular models in 

biology. For example, signal-response relationships in various phosphorylation 

pathways are well investigated [1]. In each pathway, one kind of signal from outside 

of cell is received by one kind of receptors on the membrane, and its signal is 

transduced by the phosphorylation chains of a set of defined molecules into 

molecules in the inner cell structure, named nucleus. In this process, more than 100 

molecules are generally involved in the signal transduction. Indeed, various features 

of signal transduction are well known, and many lists and figures of signal 

transduction pathways are seen in various databases. However, it is well known that 

precise signal transduction pathways still remain to be solved and the finding of 

new molecular relationships responsible for various conditions is still one of the 

important issues in experimental biology.  

With these situations in mind, two points are definitely different between the 

models in biology, especially molecular biology, and those in the fields of 

engineering. One is a conception issue: the molecular relationships in many 
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biological phenomena highly depend on the external conditions. While the 

relationships may be kept in the basic metabolic pathways such as EM pathway 

responsible for energy production, molecular relationships in most pathways are 

flexible, in response to the external conditions. This flexibility means that the model 

cannot be defined by a static structure. The other point is a technical issue: the 

model including unmeasured variables is inevitable in some cases. Since the 

molecular relationships are highly flexible, most experiments are designed to be as 

less perturbation to the cell as possible. This naturally means that all variables in the 

model are rarely measured, and the model behavior should be investigated by the 

measured data of a limited set of variables. Unfortunately, standard numerical 

parameter optimization frequently assumes that the data of all variables are obtained, 

and subsequently produces unstable estimation of parameter values. 

In this paper, we would like to describe our tiny trials to overwhelm the above 

two issues: one is the network screening for catching the active networks (models) 

in particular conditions [2-4], and the other is the symbolic-numeric optimization 

procedure for improving the accuracy of parameter estimation [5,6]. 

2 Network Screening 

2.1 Concept 

The standard approach of network structure analysis in molecular biology is to 

infer the network structure from the measured data by using mathematical models, 

such as Boolean network and graphical model. This approach has possibility of 

finding new relationships between transcriptional factors and their regulated genes, 

guaranteed by mathematical soundness, such as (partial) dependence between two 

variables. As mentioned earlier, however, a static network cannot correspond well to 

the dynamical changes of molecular network structures. In addition, verification of 

inferred network structure for further analysis such as simulation needs huge 

experiments, due to new relationships, which cannot be found in the previous 

knowledge, in the inferred structure.  

Our approach is a reverse approach to the standard approach. First, we gather a 

set of known network structures that are guaranteed by previous experiments. Then, 

we rationally select some networks among them, by using the measured data under 

the particular conditions. In the selection, we utilize a statistical procedure for 

estimating the consistency of graph structure with measured data [7]. Since the 

simple application is frequently not suitable for selecting the networks from the 

actual data, we have slightly modified its procedure for the practical applications. 

Although this approach cannot find any new relationships between molecules, all of 

the relationships in the selected networks are guaranteed by previous experiments. 

2.2 Procedure 

Network screening was performed as described previously [2-4]. This analysis is 

based on the procedure for estimating the consistency of a network structure 

(directed acyclic graph) with the measured data for the constituent variables in the 

graph [7]. The joint density function for a given network (reference network) was 

On Two Issues of Molecular Network Models in Systems Biology 23



recursively factorized into conditional density functions, according to the 

parent-child relationship in the graph. The conditional functions were quantified 

into log-likelihoods, using linear regression for the measured data, with the 

assumption that the data followed a normal distribution (Gaussian network). The 

probability of the log-likelihood for the network structure (graph consistency 

probability; GCP) was then estimated from the distribution of log-likelihoods for 

2,000 networks, generated under the condition that the networks shared the same 

numbers of nodes and edges as those of the given network.  

The GCP was estimated for the ensemble of reference networks, to extract the 

candidate activated networks in the particular conditions, in a process termed 

„network screening‟. The reference networks were composed of the sub-networks 

that were constructed using the previous knowledge on the relationship between the 

transcriptional factors and their regulated genes, which is frequently compiled in 

databases such as TRANSFAC [8] or the combination of the data measured by the 

ChIP-on-Chip experiments and the following classification of the data based on the 

functional gene sets such as MSigDB [9].  

Network-based analysis based on high throughput data is a challenging issue, 

which is expected to help us understand complex disease, and further elucidate the 

essential mechanisms of living organisms which would escape conventional single 

gene-based analysis. Instead of picking up differently expressed genes from 

high-throughput data, we use known functional networks to screen datasets and 

evaluate significantly activated networks. Then the network shows a whole picture 

of activated TF regulated functional gene sets under certain conditions, which 

cannot be achieved by single gene based method, and is much easier to bring the 

biological insights to us. 

3 Symbolic-Numeric Optimization Procedure 

3.1 Concept 

In the studies of model dynamics, in general, a model to describe the 

relationship between constituent variables is first constructed with reference to the 

empirical knowledge, and then the model is mathematically expressed by 

differential equations, on the basis of the variable relations in the elementary 

process, such as molecule reactions. Finally, the parameters in the model are 

estimated by various parameter optimization techniques, from the time-series data 

measured for the constituent variables. While the computational time for parameter 

estimation has been greatly reduced, by the improvements in optimizing algorithms 

and the advent of high performance computers, the accurate numerical estimation of 

parameter values for a given model remains a limiting step. Indeed, the range of 

parameter values estimated by various optimization techniques is frequently broad, 

due to the conditions for parameter estimation, such as the initial values. In 

particular, we cannot always obtain the data measured for all of the constituent 

molecules in systems biology, due to limitations of experimental conditions 

measurement techniques. In this case, one of the issues we should resolve is the fact 

that the parameters are estimated from the data for only some of the constituent 

24 The 10th International Symposium on Operations Research and Its Applications



molecules. Unfortunately, it is more difficult to estimate the parameters in such a 

network model including unmeasured molecules. 

Recently, we proposed a novel method for optimizing the parameters [5,6], by 

using differential elimination. Differential elimination was used in previously in the 

context of a system identification based on physical laws [10,11]. In our method, we 

use part of a technique from a previous study [12], in which differential elimination 

is introduced into the parameter optimization in a model including unmeasured 

variables. Instead of using differential elimination for estimating the initial values 

for the following parameter optimization, as done in the previous study [12], the 

equations derived by differential elimination are directly introduced as the 

constraints into the objective function for the parameter optimization.  

3.2 Procedure 

The key point is the introduction of new constraints obtained by differential 

elimination into the objective function, to improve the parameter accuracy. 

Following an explanation of differential elimination, the method of introducing the 

constraints [5,6] is briefly described. 

Differential algebra aims at studying differential equations from a purely 

algebraic point of view [13,14]. Differential elimination theory is a sub theory of 

differential algebra [15], based on Rosenfeld-Gröbner [16]. The differential 

elimination rewrites the inputted system of differential equations to another 

equivalent system according to ranking (order of terms).  

We assume a model, which is described by the system of parametric ordinary 

differential equations. Then, the differential elimination produces the equations 

equivalent to the original system. The values of rewritten system can be calculated, 

if we have time-series data of one of variables, and they would be zero, if all 

parameters were exactly estimated. Thus, rewritten system can be regarded as a 

kind of error function that expresses the difference between the measured and 

estimated data.  

In general, the typical objective function for evaluating the reproducibility of an 

experimentally measured time-series for a parameter set is the total relative error. 

The parameter set is then estimated when the total relative error falls below a given 

threshold. However, the immense searching space of parameter values frequently 

hinders correct parameter estimation. Furthermore, all of the time series data for a 

parameter set are not always measured, especially in systems biology. To overcome 

this problem, we introduce the constraint between the estimate obtained by 

differential elimination (DE constraints), into the objective function, and a linear 

combination of the typical objective function of the total relative error and the DE 

constraints is defined as a new objective function.  

One of the features of the DE constraint is that it includes the derivatives of the 

original system for the model. Since the derivatives generally contain the curve 

form information of the measured time-series data, such as slope, extremal point 

and inflection point, the new objective function estimates the difference of not only 

the values but also the comprehensive forms between the measured and estimated 

data, while the standard objective function estimates only the value difference. Note 

that the DE constraint is rationally reduced from the original system of differential 
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equations for a given model, in a mathematical sense. Thus, our approach is 

expected to become a general approach in parameter optimization for improving the 

parameter accuracy. 

4 Concluding Remarks 

We introduced two methods for network structure and dynamics analyses, which 

we considered specific situations in modeling and analysis of systems biology. One 

method was designed to consider the model flexibility depending on external 

conditions by a statistical approach, and the other was designed to consider the 

model including unmeasured variables for less external perturbation to the 

organisms by a symbolic computation approach. Two methods still have some 

pitfalls, but partially overwhelm some difficulties of the analyses by previous 

standard methods. Further improvements of the two methods may be useful for 

uncovering new molecular mechanisms underlying complex biological phenomena.  
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