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Abstract The aim of this article is to provide new results concerning the distribution of the first
time the process reaches its ultimum maximum. This is established for the case when the under-
lying process is either a linear Brownian motion with negative drift or a subordinated Gaussian
process. To attain this, one revisits the Wiener-Hopf factorization identities provided by Pecherskii-
Rogozin (1969). The Pecherskii- Rogozin identities bring more insight of how quantities like the
ascending and descending epochs and the first time to its ultimum supremum inter-play to derive
the explicit distribution of the argmax of the process. Extensive simulations are performed to show
the closeness between the theoretical and its empirical distribution. We apply our methodology to
three USA indices and we show its applicability. We finally provide more evidence that the asset
price movement model follows a geometric subordinated Gaussian process.

Keywords Wiener-Hopf factorization; Supremum functional; Ascending and descending epochs;
Spitzer’s condition; Linear Brownian motion; Generalized hyperbolic distribution; EM algorithm

1 Introduction
The assumption that time series of financial data follows a geometric Brownian mo-

tion (Merton 1973, Black and Scholes 1973) became quite popular three to four decades
ago. This was due to the fact that normal distribution or Gaussian processes, in general,
have been documented in an enormous number of articles and the distribution and the
process itself generate nice analytic properties which are applicable to a huge number of
applications. Further, the statistical properties of the fluctuations of financial prices have
been widely researched since Mandelbrot (1963) and Fama (1965). However, it has been
shown that contrary to Gaussian processes, logarithmic prices of assets, i.e., lnPt , t ≥ 0,
are neither Gaussian nor homogeneous and do not have independent increments (Cont
2001). Despite empirical evidence, classical diffusion models continue to be used as a
benchmark due to their simplicity. Preserving the simplicity feature, researchers develop
financial models maintaining both time and space homogeneity, i.e., they assume that the
log-prices, lnPt , follow a Lévy process. This class of processes is much broader than the
Gaussian counterpart and includes both Gaussian and non-Gaussian processes.

Returning to the statistical properties, Mandelbrot (1963) and Fama (1965) suggested
that logarithmic prices follow a stable law with an index close to 1.7. De Vries (1994),
Muller et al (1999) and Plerou et al (1999), among others, have shown that there is enough
evidence that a Pareto type of distribution could fit well with log-returns with an index,
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now, falling between 2 and 4. More recently, Barndorff-Nielsen (1997), and Eberlein
et al (1998) have provided another class of distribution that fits well with the empirical
distribution of log-returns, the generalized hyperbolic (GH) family of distributions. It
is well known that the normal inverse Gaussian (NIG) is a member of GH. Therefore,
opinions vary among scientists with respect to the shape of the distribution of log-returns.
Nevertheless, the results of more than half a century of empirical studies on financial
prices indicate that asset prices do share some quite non-trivial statistical properties. Such
properties, common across a wide range of instruments, markets and time periods are
called stylized empirical evidence (see, e.g., Cont 2001). Some of the stylized statistical
properties of the log-returns are the following: (a) the log returns Rt,h = lnPt+h− lnPt
have insignificant autocorrelations, i.e.,Rt,h ∼= Rh (stationary), (b) they exhibit space ho-
mogeneity (identically distributed for equally spaced increments), (c) they do not follow
Gaussian distribution (specifically, log-returns exhibit kurtosis and fat tail), (d) they are
asymmetric, and (e) the logreturns exhibit stochastic volatility with suppressed and cluster
periods. Calling upon the above properties, the aim of this article is to develop a method-
ology to identify a general model such that the underlying process captures all the above
robust properties that log-returns share. The proposed model that log-prices (weekly, dai-
ly), lnPt , t ≥ 0, is then assumed to satisfy both time and space homogeneity. As a note,
it has been observed that the normality assumption can be quite reasonable for aggregat-
ed data (monthly). Then, the proposed generalized model should be flexible enough to
accommodate even this special case.

Another aim of the proposed study is to capture an important property that alarms the
majority of investors in a recession period. Specifically, we are interested in studying the
behavior of the waiting time that the log-price process takes to reach its maximum. In
contrast to the log-prices considered earlier, the observations here are required to satisfy a
certain market characteristic (recession period), i.e., it is mandatory that the observations
are collected at a period when this characteristic is satisfied. For this specific scenario, we
propose to obtain the distribution of the time it takes for the process to reach its maximum.
This, in turn, will play a role in the decision of an investor whether or not to stay or remove
herself/himself from the market.

The above applications will be shown that they have a strong relationship with fluc-
tuation theory. The classical fluctuation theory has proved vastly fruitful in both theory
and applicability. Over the last decade or two, much effort has been devoted to the de-
velopment of a corresponding theory in continuous processes and particularly for Lévy
processes.

In this article we shall make methodical use of the Wiener-Hopf factorization for Lévy
processes from which many identities are deduced that play a significant role in the devel-
opment of fluctuation theory. Among many available tools, the Pecherskii and Rogozin
(1969) identity, blending with various techniques used for the development of ascending
and descending ladder epochs and heights in continuous-time, will play an important role
in obtaining a much greater degree of understanding and expansion of existing theory. It
should be highlighted that a continuous version of fluctuation theory is not quite a straight
forward imitation of the discrete case, random walks. Clearly, the basic technique ap-
plied in random walk theory (combinatorics arguments) is not practically suitable for the
continuous case. This work is formulated based largely on the Pecherskii and Rogozin
(1969) identity. The key proposal here is to study excursions away from the maximum

2 The 10th International Symposium on Operations Research and Its Applications



for Lévy processes. These types of properties coincide with studying excursions away
from reflected processes. The main objective of this article is then to show the relevance
to various applications including financial models.

The outline of the article is as follows: Section 2 presents all constructions at a more
general level along with conditions under which they may be implemented. Section 3
considers the case of a linear Brownian motion and obtains explicit expressions for the
general cases considered earlier. Section 4 provides explicit results of subordinated Gaus-
sian processes that have close ties with financial models. Finally, Section 5 demonstrates
the validity of the results by providing extensive simulations for certain situations of in-
terest and we provide sufficient evidence that three USA indices satisfy the proposed
methodologies. Specifically, we analyze time series data for S&P 500, NASDAQ and
NYSE from the last three years.

2 Fluctuation of Lévy processes
An important tool in the study of fluctuations is the Wiener- Hopf factorization which

we assess below in order to have better insight for some quantities of interest. For more
detailed results on the subject, we refer the reader to Sato (1999, Ch 9) and Bertoin (1996).

Let {Xt : t ≥ 0} be an R -valued Lévy process defined on a filtered probability space
(Ω,F ,{Ft},P), where the filtration {Ft} is assumed to satisfy the usual conditions of
right continuity and completion. We take P(X0 = 0) = 1 . It is well known from the Lévy-
Khintchine formula that a Lévy process on (Ω,F ,{Ft},P) satisfies E[exp(iθXt)] =
etψ(θ), t ≥ 0,θ ∈ R, where

ψ(θ) = iµθ − 1
2

σ2θ 2 +
∫ ∞

−∞
{1− eiθx + ixθ I(|x|< 1)}Π(dx) (2.1)

withµ ∈ R,σ ≥ 0 and Π on R \{0} being the Lévy measure. It is also required that the
Lévy measure satisfies

∫ ∞
−∞{x2 ∧ 1}Π(dx) < ∞. The function ψ is referred to as a Lévy

exponent, defined for R(θ)≥ 0 , and its restriction to the non negative real line is strictly
convex and satisfies limθ→∞ψ(θ) = ∞ . It is conventional that any Lévy process can be
characterized by the triplet (µ,σ ,Π).

Let X t := supu≤tXu and X t := in fu≤tXµ denote the supremum and the infimum of the
processes Xt , t ≥ 0 , respectively. One can then define the reflected process by Rt := X t−
Xt . The symbol τ represents a random variable independent of the process {Xt : t ≥ 0}
and is distributed according to exponential distribution with parameter q > 0 . We further
define the first passage times to either maximum or minimum by

T+
x : in f{t > 0 : Xt > x} andT−x : in f{t > 0 : Xt ≤ x}, for x ∈ R

When x = 0 ,T+
0 and T−0 present the first ascending and first descending ladder epochs,

respectively.
The next set of definitions and results are introduced to show relationships between the

index time J(t) = in f{u∈ [0, t] : Xu =X t} that was introduced by Bingham (1975) and the
indices introduced below by Pecherskii and Rogozin (1969). Specifically, Pecherskii and
Rogozin (1969) found it convenient to study Levy processes using X+∗

t : max{Xt−,Xt}(X−∗t :
min{Xt−,Xt}), instead of {Xt : t ≥ 0}. Next, they introduced the modified first passage
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time to be T ∗+x := in f{t > 0 : X∗+t ≥ x}(T−∗x := in f{t > 0 : −X−∗t ≥ x}). Finally, we
define the times it takes the process X+∗

t X−∗t , to attain its maximum for the first and last
time by J+(t) := in f{u ∈ [0, t] : X+∗

u = Xt} and J+∗(t) := sup{u ∈ [0, t] : X+∗
u = Xt}, re-

spectively. Using duality arguments, one may also define in the same way the indices
J−(t) and J−∗(t), for the case when the minimum is attained. Calling upon the fact that a
Lĺęvy process is time and space homogeneous and given that conditions A-C are satisfied,
as shown below (except for type A0), Pecherskii and Rogozin (1969) have then shown that
(i.) P(T ∗+x −T+

x > 0 for any x > 0 and (ii.) J+(t) = J∗+(t)a.s. for all t ≥ 0. Using the
duality property, it can be also shown that (i.) P(T−∗x −T−x > 0 for any x > 0 and (ii.)
J−(t) = J−∗(t)a.s. for all t ≥ 0. Thus, Pecherskii and Rogozin (1969) have shown that
the time taken to attain the maximum for the first or last time is almost surely the same.

The following theorem reviews the Wiener-Hopf factorizations found in Bingham
(1975) and Doney (2005). Similar versions of these factorizations were first introduced in
Rogozin (1966) and Pecherskii and Rogozin (1969) under the restricted processes. Com-
ments about the equivalence of the results expressed in the following theorem, the defini-
tions stated above and the original results obtained by Pecherskii and Rogozin (1969) are
clarified below.

Theorem 1. Let {Xt : t ≥ 0} be a real-valued Lévy process and let τ denote a random
variable independent of the process distributed according to exponential distribution with
parameter q > 0. Then, for θ ,ϑ > 0, we have the following identities and factorizations:

1. E[exp(−ϑτ +θXτ)] =
q

q+(ϑ−ψ(θ))

2. q
q+(ϑ−ψ(θ)) = ψ+

q (ϑ ,θ)ψ−q (ϑ ,θ)

where i. ψ+
q (ϑ ,θ) is analytic in the half-plane ℜ(θ) < 0, continuous and non-

vanishing in ℜ(θ)≤ 0, and is the Laplace-transform of an infinitely divisible prob-
ability on the right half-line, ii. ψ−q (ϑ ,θ) is analytic in the half-plane ℜ(θ) > 0,
continuous and non-vanishing in ℜ(θ)≥ 0, and is the Laplace-transform of an in-
finitely divisible probability on the left half-line, and iii. subject to i. and ii., the
factorization is unique to within factors of the form ecs.

3. For q > 0, ϑ > 0 and ℜ(θ)≤ 0

ψ+
q (ϑ ,θ) = E[exp(−ϑG+

τ +θXτ)] = exp{∫ ∞
0
∫ ∞

0 e−qt(e−ϑ t+θ t −1)P(Xt ∈ dx) dt
t }

where G+
t := sups≤ t : Xs = X s.

4. For q > 0, ϑ > 0 and ℜ(θ)≤ 0

ψ−q (ϑ ,θ) = E[exp(−ϑ(τ−G+
τ )+θ(Xτ −Xt))] = exp{∫ 0

−∞
∫ ∞

0 e−qt(e−ϑ t+θ t −1)
P(Xt ∈ dx) dt

t }
5. For q > 0, ϑ > 0, ℜ(θ)≤ 0 and ℜ(λ )≥ 0

ψ+
q (0,θ)ψ−q (0,λ ) = E[exp(θXτ −λ (X−Xτ))].

6. For q > 0, ϑ > 0, andℜ(θ)≤ 0, ℜ(λ )≥ 0 and ℜ(ν)≥ 0

E[exp(θXτ −λ (X−Xτ)−νJ(τ))] = ψ+
q+ν(0,θ)ψ−q (0,λ )exp(

∫ ∞
0

e−qt dt
t (e−νt −1)

P(Xt > 0))
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The aim of the article is restricted to understanding the behavior of the time J+(t),
the index at which the process reaches its maximum for the first time by time t. Note that
when J+(t) is properly standardized, J+(t) converges to the arc-sine law. We investigate
J+(t) when t is infinite without any standardization and when the process is drifting to
−∞. It is noted that the distribution of the maximum cannot be expressed by elemen-
tary functions, except in some particular cases. However, the asymptotic behavior of its
maximum, T+

x ,Rt := X t −Xt , J(t) and so on, are well established in the literature. Most
of these results are done under the random walk scenario, even though the last decade
or two there has been increased use of the Lévy processes. Our goal here is to offer
explicit expressions of some special cases of their distributions and study their behavior
compared to the asymptotic results available. These kinds of properties are unnoticeable
in the literature.

Pecherskii and Rogozin (1969) and later Sato (1999) classified Lévy processes Xt :
t ≥ 0 according to the triplet (µ,δ ,Π). They identified the following types of processes:

1. A Lévy process is of type A if σ = 0 and ν(R) < ∞ and P(X1 > 0) > 0, P(X1 <
0)< 0

2. A Lévy process is of type B if σ = 0, ν(R)< ∞ and
∫

D |x | ν(dx)< ∞ and
3. A Lévy process is of type C if σ 6= 0 or

∫
D |x | ν(dx) = ∞, where D = {x ∈ R : |x |≤

1}.

When the process {Xt : t ≥ 0} is of type A satisfying ψ(θ)= γ0θ +
∫ ∞

∞ {1−eiθxΠ(dx)}
with γ0 = 0, Pecherskii and Rogozin (1969) introduced the subtype A0. The parameter
above represents the drift of the process.

The terminology below originated from Chung and Doob (1965), which will be our
basic reference in what follows. To introduce the following proposition, we now refer the
reader to Karatzas and Shreve (1988, p.5).
PROPOSITION 1. If a stochastic process Xt : t ≥ 0 is right-continuous or left-continuous
and is adapted to the filtration {Ft}, then it is also progressively measurable with respect
to {Ft}.

To make sense of the implication of the above proposition, we let n ∈ N\{0 },and
k = 0,1, ...,2n−1 and we define

Xn
k (t) := Xk/2n , f ort ∈ [

k
2n ,

k+1
2n ),

and Xn
k (0) = X0 = 0. The constructed map (k,ω) 7→ Xn

k (ω), from [0,∞)×Ω into R
is then evidently B([0,∞))

⊗
Ft− measurable. By right-continuity, one obtains that

limn→∞Xn
k (t) = Xt for any t ∈ [ k

2n ,
k+1
2n ). Thus, once again, the map from t 7→ Xt is clearly

B([0,∞))⊗Ft− measurable.
The main premise below is to show that random walks and Lévy processes are often

conflated. The proposed approach utilized here is similar to that of Pecherskii and Ro-
gozin (1969). Here, we just restrict our study to the process J(t), t ≥ 0, and we obtain an
identity using similar tools as the above authors. It is understood that our conclusion will
be a special case of that obtained under the general Theorem 1. The contribution here lies
in narrowing the work precisely to the index J(t), t ≥ 0. In what follows and for specific
types of Lévy processes, we demonstrate an identity between J+(t) and G+

t .
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It is known from the discrete case (see,e.g., Feller VII, 1971, p.416) that

P(s) =
∞

∑
n=0

sn pn = exp(
∞

∑
n=1

sn

n
P(Sn > 0)) and

Q(s) =
∞

∑
n=0

snqn = exp(
∞

∑
n=1

sn

n
P(Sn ≤ 0)),s ∈ (0,1), (2.2)

where P(s) and Q(s) represent probability generating functions of the corresponding se-
quences pn = P(

⋂n
j=1(S j > 0)), qn = P(

⋂n
j=1(S j ≤ 0)), respectively and S j, j≥ 1 denotes

partial sums of i.i.d. random variables. Let J+n , n ≥ 1 denote the discrete analogue of
J+(t), t ≥ 0. It can be seen that

P(J+n = j) = p jqn− j, j = 0,1, ...,n,n≥ 1, (2.3)

where pn = P(T−0 > n) and qn = P(T+
0 > n), n≥ 1. It is then clear that for s,x ∈ (0,1),

(1− x)
∞

∑
n=0

xnE[sJ+n ] = (1− x)
∞

∑
n=0

xn
n

∑
j=0

s j p jqn− j

= (1− x)
∞

∑
j=0

(sx) j p j

∞

∑
n= j

xn− jqn− j = (1− x)P(sx)Q(x)

= exp(−
∞

∑
n=1

xn

n
(1− sn)P(Sn)> 0) (2.4)

As in Pecherskii and Rogozin (1969), we set x = e−q/2n
,s = e−v/2n

and Sk ≡ Xn
k (t) for

t ∈
[ k

2n ,
k+1
2n

)
and n ∈ N\{0}, and k = 0,1, . . . ,2n−1. Upon Proposition 1, we let n ↑ ∞.

Thus, the left-hand-side of (2.4) tends to the following limit:

(1− x)∑∞
n=0 xnE[sJ+n ] =

(
1− e−q/2n)

(1/2n) ∑∞
k=0 e−qk/2n 1

2n E[e−vJ+k /2n
]

→ q
∫ ∞

0
e−quduE[evJ+(u)]. (2.5)

Similarly, letting n ↑ ∞, the right-hand-side of (2.4) converges to the following:

exp
(
−

∞

∑
n=1

xn

n

(
1− sn)

)
P(Sn > 0) = exp

(
−

∞

∑
k=1

e−qk/2n

(k/2n)

1
2n

(
1−e−vk/2n

)
P(Xn

k (u)> 0)
)

→ exp
(
−
∫ ∞

0

e−qudu
u

(
1− e−vu

)
P(Xu > 0)

)
. (2.6)

Combining (2.5) and (2.6), the above results reveal the following:
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Theorem 2. Let {Xt : t ≥ 0} be a real-valued Lévy process and let τ denote a random
variable independent of the process distributed according to exponential distribution with
parameter q > 0. Then, for ℜ(v) ≥ 0, under all types of Lévy processes, except for type
A0,

E
[
exp(−vJ+(τ))

]
= exp

{
−
∫ ∞

0

e−qudu
u

(1− e−vu)P(Xu > 0)
}
.

Upon letting q→ 0 , we also deduce the following.

Theorem 3. Under the same conditions as in Theorem 2 the process {Xt : t ≥ 0} , for
ℜ(v)≥ 0, satisfies:

E
[
exp
(
− vJ+(∞)

)]
= exp

(
−
∫ ∞

0

du
u

(
1− e−vu

)
P(Xu > 0)

)
.

This is obviously clear since q
∫ ∞

0 e−quduE
[
evJ+(u)

]
=
∫ ∞

0 e−uduE
[
evJ+(u/q)

]
→

E
[
evJ+(∞)

]
as q→ 0 . From Theorem 1(3), letting θ → 0, we also have that for ℜ(ϑ)≥ 0,

ψ+
q (ϑ ,0) = E

[
exp
(
−ϑG+

τ
)]

= exp
{∫ ∞

0

e−qtdt
t

(
e−ϑ t −1

)
P(Xt > 0)

}

which coincides with the result obtained in Theorem 2. This confirms that J+(t) = G+
t

a.s. for all t ≥ 0.
In a seminal paper, Greenwood and Pitman (1980) showed that for a random variable

τ ∼ Exp(q), which is independent of the process {Xt : t ≥ 0}, the bivariate process (τ,Xτ)
can be decomposed to the supremum and its reflection as follows:

(τ,Xτ) = (G+
τ ,Xτ)+(τ−G+

τ ,Xτ −Xτ).

Using the time reversal, they have then shown that

(τ−G+
τ ,Xτ −Xτ) =D (G−τ ,Xτ). (2.7)

Equation (2.7) is then utilized to obtain similar results to Theorem 2 or 3 for the reversal
process. Specifically, we have:
COROLLARY 1. Let {Xt : t ≥ 0} be a real-valued Lévy process and let τ denote a random
variable independent of the process distributed according to exponential distribution with
parameter q > 0 . Then, for ℜ(v)≥ 0 , under all types of Lévy processes except for type
A0,

E
[
exp
(
− vJ−(τ)

)]
= exp

(
−
∫ ∞

)

e−qudu
u

(
1− e−vu)P(Xu < 0)

)
.

Upon letting q→ 0, one may also obtain the next result. COROLLARY 2. Under the
same condition as in Theorem 2 the process {Xt : t ≥ 0} and for ℜ(v)≥ 0 , satisfies:

E
[
exp
(
− vJ−(∞)

)]
= exp

(
−
∫ ∞

0

du
u

(
1− e−vu

)
P(Xu < 0)

)
.

The above identities have many important consequences, the first of which follows (see
also e.g., Bertoin 1996, Kyprianou, 2004):
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Theorem 4. Let {Xt : t ≥ 0} be a real-valued Lévy process. Then, (we exclude the case
that the Lévy process is of type A0 )

1. If
∫ ∞

1
du
u P(Xu > 0)< ∞, then limt→∞Xt < ∞ a.s. and limt→∞Xt =−∞ a.s.

2. If
∫ ∞

1
du
u P(Xu < 0)< ∞, then limt→∞Xt = ∞ a.s. and limt→∞Xt >−∞ a.s.

3. If
∫ ∞

1
du
u P(Xu > 0)< ∞, then P

(
J+(∞)< ∞

)
= 1 and P

(
J−(∞) = ∞

)
= 1.

4. If
∫ ∞

1
du
u P(Xu < 0)< ∞, then P

(
J+(∞) = ∞

)
= 1 and P

(
J−(∞)< ∞

)
= 1.

To complete some of the arguments expressed above, we also found convenient to
introduce various results taken from Rogozin (1966). The importance of condition

∫ ∞
1

du
u

P(Xu > 0) < ∞ was also utilized in Rogozin (1966). Specifically, Rogozin (1966) states
the following.

Theorem 5. (Rogozin 1966)

1. With probability one, supt∈[0,∞)Xt = X < ∞ if and only if
∫ ∞

1
du
u P(Xu > 0)< ∞.

In this case,

E
[
exp(θX)

]
= exp

{∫ ∞

0

∫ ∞

0

(
eθx−1

)
P(Xt ∈ dx)

dt
t

}
.

2. With probability one, supt∈[0,∞)Xt = ∞ if and only if
∫ ∞

1
du
u P(Xu > 0) = ∞.

To match random walks with that of Lévy processes, it is of importance to also see
how the Spitzer’s condition plays under the continuous scenario. The Spitzer’s condition
relies on whether or not t−1 ∫ t

0
du
u P(Xu > 0) is finite. Once again, Rogozin (1966) shows

the following.

Theorem 6. (Rogozin 1966)

1. If
∫ 1

0
du
u P(Xu > 0) = ∞, then T+

0 = XT+
0
= 0 a.s.

2. If
∫ 1

0
du
u P(Xu > 0)< ∞, then P(T+

0 = 0) = 0 and P(X = 0) = exp
{
− ∫ ∞

0
dt
t P(Xt >

0)
}

.

Before we confine our work to the case of J+(∞), it is worth mentioning the law of
J+(t) under a Lévy process. Clearly, the index J+(t) is associated with the arc-sine law.
It is also accepted that the arc-sine law is contingent upon whether the Spitzer’s condition
holds. Specifically, it has been shown that when

lim
t→∞

1
t

∫ t

0
P(Xu > 0)du = ρ ∈ [0,1], (2.8)

then, for ρ ∈ (0,1),J+(t) follows the generalized arc-sine law concentrated on [0,1] given
by

lim
t→∞

P
(

J+(t)
t
∈ du

)
=

(u)ρ−1(1−u)−ρ

Γ(ρ)Γ(1−ρ)
du =

sinρπ
π

(u)ρ−1(1−u)−ρ du,u < 1. (2.9)
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One may also obtain the same results if the limits in either (2.8) or (2.9) are replaced
by t ↓ 0. It should be noted that equation (2.9) holds if one replaces t−1J+(t) either by
t−1G+

t , t > 0 or 1
t
∫ t

0 P(Xu > 0)du . Moreover, when ρ = 0 (or 1), we just have the Dirac
point mass at zero (or respectively the Dirac point mass at 1) (see, e.g., Bertoin 1996, p.
169).

The intention of this article is to capture the behavior of the random variable J+(∞)
when J+(∞)< ∞ (finite). This is equivalently translated by saying that the Lévy process
is drifting to −∞. To this point, we confine our analysis only to the case when ρ = 0 and
identifying the law of the index J+(∞) without any further standardization. While Theo-
rem 3 provides an explicit form of the Laplace transform of J+(∞) , the expression therein
is still of technical interest. We still need to have an exact expression of P(Xu > 0),u > 0
, before we can have an exact expression of the Laplace transform. Upon knowing the
distribution of the underlying process we then should be able to obtain the corresponding
density of J+(∞) by inverting the Laplace transform. To this end, we shall concentrate on
developing the analysis by assuming that the underlying process is of Gaussian type.

3 An application: linear Brownian motion
Brownian motion is one of the most fundamental distinctive aspects of stochastic pro-

cesses. It has been documented in a multitude of articles and in a huge number of text-
books. It plays a bench-mark in studying more complex processes. This is exactly the
reason we employ it here. We consider the probability law

µ(x; µ,s) =
1√

2πs2
exp
(
−(x−a)/2s2) ,

supported on R , where a ∈ R and s > 0. This is the well-known Gaussian distribution.
It is clearly a Levy process (infinitely divisible) with no jumps. It is easy to see that
the characteristic exponent of a linear Brownian motion is given by ψ(θ) = ia− 1

2 s2θ 2,
i.e., a Brownian motion has the following stochastic representation:Xt := at + sBt , where
{Bt : t ≥ 0} is the standard Brownian motion. It is easy to see that {Xt : t ≥ 0} is both
time and space homogeneous with continuous paths. To illustrate the theory expressed in
Section 2, we here assume that a < 0 .

It is known that T+
x := inf{t > 0 : Xt > x} is the first time a Brownian motion with

linear drift a < 0 exceeds level x ∈ R.It is also known that T+
x is a stopping time. More-

over, since the Brownian motion has continuous paths, it is almost certain that XT+
x
=

aT+
x + sBT+

x
= x. From the strong Markov property one can then see that {XT+

x +t =

a(T+
x + t)+ sBT+

x +t − x : t ≥ 0} =D {Xt : t ≥ 0}, i.e., the first passage time, T+
x x ∈ R,

can be decomposed to independent components, T+
x = T+

y + T̃+
x−y with T+

y and T̃+
x−y be-

ing independent and T̃+
x−y =D T+

x−yfor x,y ∈ R . Moreover, it can be shown thatT+
x is a

subordinator (infinitely divisible) for x > 0 , which is characterized by the triplet

µ =−2s2x
a

∫ µ/s2

0
ϕ(y)dy,σ = 0 and ∏(dt) =

x√
2πs2t3

e−a2t/2s2
dt,

and concentrated on (0,∞). In addition, the cumulative distribution function of T+
x is

Subordinated Gaussian Processes, The Log-Return Principles 9



obtained by

P(T+
x ≤ t) = P(X t ≥ x) = Φ

(
− x

s
√

t
+

a
s

√
t
)
+ e2ax/s2

Φ
(
− x

s
√

t
− a

s

√
t
)
, (3.1)

and the law of T+
x can be explicitly computed as (see also, e.g., Karatzas & Shreve, 1988,

p.197)

P(T+
x ∈ dt) = h(t,x;a,s)dt =

xdt√
2πs2t3

exa/s2
exp
(
− 1

2s2 (x
2t−1 +a2t)

)
, (3.2)

where Φ(x) =
∫ x

0 ϕ(y)dy = 1√
2π

∫ x
0 e−y2/2dy. Note that when a = 0 , ρ = 1/2 for the

Brownian motion. Hence the arcsine law is given by

P
(J+(t)

t
∈ du

)
=

u−1/2(t−u)−1/2

π
du =

2
π

arcsin(
√

u)du,0 < u < 1. (3.3)

For the discrete case and from equation (2.3), we have that the probability a process
reaches its maximum for the first time in the jth step can be expressed using the following
identity: P(J+∞ = j) = P(T−0 > j)P(T+

0 = ∞). With this in mind, we shall try to derive
an explicit expression for the continuous analog when the process follows a Brownian
motion with drift. The first result is expressed as follows. From Theorem 6, it is clear that∫ 1

0
du
u P(Xu > 0) = ∞, and one may easily see that T+

0 = XT+
0
= 0 a.s. and P(X = 0) = 0.

Theorem 7. For the Brownian motion {Xt = at + sBt : t ≥ 0}, for ℜ(v) ≥ 0,a < 0 and
s > 0, the following holds:

E[exp(−vJ+(∞))] =
2

1+
(

1+ 2vs2

a2

)1/2 =

(
2 |a|√

2s

){(
v+ a2

2s2

)1/2
− |a|√

2s

}

v
.

PROOF. From Theorem 3, we begin determining the following:
∫ ∞

0

du
u
(1− e−vu)Φ

(−a
√

u
s

)
=

∫ ∞

0
Φ
(−a
√

u
s

)
d
{ ∞

∑
j=0

(−1) j(vu) j+1

( j+1)!( j+1)

}

=
1

2
√

π

( −a
s
√

2

) ∞

∑
j=0

(−1) j+1v j+1

( j+1)!( j+1)

∫ ∞

0
u j+ 1

2 e−
a2u
2s2 du

=
1

2
√

π

∞

∑
j=0

(−1) j Γ( j+ 3
2 )

( j+1)!( j+1)

(2vs2

a2

) j+1

=
1

2
√

π

∫ 2vs2

a2

0

∞

∑
j=0

(−1) j Γ( j+ 3
2 ) j!

( j+1)!
u j

j!
du

=
Γ(3/2)
2
√

π

∫ 2vs2

a2

0
2F1(

3
2
,1;2;−u)du

=
1
4

∫ 2vs2/a2

0

2du
(1+u)1/2{1+(1+u)1/2} ,
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where 2F1(1,b;c;z) denotes the Gauss hypergeometric function, which converges for ar-
bitrary a,b and c and for real z lying in the unit disc, i.e., |z| < 1, and for z = ±1 if
ℜ(c− a− b) > 0 . Moreover,the last equality above was found in Abramowitz and Ste-
gun (1970, p.556). In completing the algebra above we also noticed that

∫ ∞

0

du
u
(1− e−vu)Φ

(−a
√

u
s

)
=

1
2

∫ 2vs2/a2

0

{ 1
(1+u)1/2 −

1
1+(1+u)1/2

}
du

= ln
{(

1+(1+
2vs2

a2 )1/2
)
/2
}
.

In conjunction with Theorem 3, the proof of Theorem 7 is now in order.
To demonstrate the subsequent result, we write L ( f )(v) =

∫ ∞
0 e−vt f (t)dt = f̂ (v),v ∈

[0,∞),to denote the oneĺCsided Laplace transform on the right-half-line of a function
f and we call L −1( f̂ )(t) = f (t), t ∈ [0,∞),to denote its corresponding inverse Laplace
transform. So, if f is continuous on t ∈ [0,∞), and the function e−vt f (t), t ∈ [0,∞),is
absolutely integrable then f̂ is an analytic function for ℜ(v) ∈ [0,∞). It is also well
known that L −1

(
a f̂ + b

v

)
(t) = a f (t)+b, for a,b ∈ R, and L −1

(
f̂/v
)
(t) =

∫ t
0 f (t)dt.

In light of the above observations, the following Theorem is in order.

Theorem 8. For the Brownian motion {Xt = at + sBt : t ≥ 0}, for ℜ(v) ≥ 0,a < 0 and
s > 0, the following holds:

fJ+(∞)(t) =
1√
π

a2

s2

∫ ∞
√

a2t/2s2

e−y2

y2 dy.

PROOF. In conjunction with the above remarks and the fact that

L −1
( (v+a)1/2

v

)
(t) =

e−at
√

πt
+a1/2er f (

√
at),

we obtain that, for t > 0 ,

L −1
(

2
|a|√
2s

(
v+ a2

2s2

)1/2

v
−2

a2

2s2

v

)
(t) = 2

|a|√
2s

e−a2t/2s2

√
πt

− a2

s2 +
a2

s2 er f (
√

a2t/2s2)

=
2√
2π
|a|
s

e−a2t/2s2

√
t
− a2

s2 er f (
√

a2t/2s2)

=
2√
π

a2

s2

{
e−a2t/2s2

2
√

a2t/2s2
−
∫ ∞
√

a2t/2s2
e−y2

dy
}

=
1√
π

a2

s2

∫ ∞
√

a2t/2s2

e−y2

y2 dy.

where er f (x) = 2√
π
∫ x

0 e−y2
dy≥ 0. This completes the proof of Theorem 8.

One may also recognize that
∫ ∞

0

a2

2s2
e−a2t/2s2

√
a2t/2s2

dt =
∫ ∞

0
t

1
2−1e−tdt = Γ(1/2) =

√
π, and (3.4)
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Figure 1: The density plot of fJ+(∞)(t) under a =−0.1 and s = 1.

a2

s2

∫ ∞

0
dt
∫ ∞
√

a2t/2s2
e−y2

dy = (
a2

2s2 )
2
∫ ∞

0
dt
∫ ∞

t

e−
a2u
2s2 du√

a2u/2s2

=
∫ ∞

0
u

3
2−1e−udu = Γ(3/2) =

√
π/2. (3.5)

Combining (3.4) and (3.5), it can then be seen that
∫ ∞

0 fJ+(∞)(t)dt = 1. This clearly con-
firms that fJ+(∞)(.) is a proper density.

4 Subordinated Gaussian process
In this section we describe how the concepts, methods and results in the previous

sections can be applied to provide a rigorous mathematical model for finance. We shall
concentrate on the most fundamental issues and those quantities which are most closely
related to Sections 2 and 3. The classical model proposed by Samuelson (1965) for a risky
asset is generally accepted to be of an exponential linear Brownian motion with drift:

Pt = P0 exp(at + sBt), t ≥ 0, (4.1)

where P0 > 0 is the initial value of the asset, {Bt : t ≥ 0} is the standard Brownian motion,
s > 0 and a ∈ R. Model (4.1) offers a feature that asset values have multiplicative time
and space homogeneity. For example, for any 0 ≤ u < t < ∞, Pt = Pu × P̃t−u, where
P̃t−u is independent of Pu and P̃t−u is identically distributed to Pt−u. As for the preceding
condition being realistic in financial markets, it is clearly open to debate. Nevertheless, for
purposes of financial modeling, exponential Brownian motion has proved to be the right
model to capture the curiosity of mathematicians, economists and financial practitioners.

12 The 10th International Symposium on Operations Research and Its Applications



To improve statistical accuracy of model (4.1) and thus improve derivative pricing,
risk management and portfolio optimization, to name some key areas of application, many
extensions of the basic models have been introduced. In this article, we shall emphasize
only three points where model (4.1) of risky asset can be shown (empirically) to be in-
adequate. Specifically, there is concern for log-returns having continuity in their paths
and that log-returns of the value of a risky asset are symmetric and follow a normal dis-
tribution. It is noticeable that model {Xt = at + sBt : t ≥ 0} has continuous paths and
therefore cannot accommodate jumps which arguably are present in observed historical
data of certain risky assets due to shocks in the market. We again denote the log-returns
by lnPt+h− lnPt = lnPt+h/Pt = Rt,h, t ≥ 0, h > 0. Thus, the most simplistic approach
to identify a stochastic behavior of the log-returns is to assume that the increments are
independent and normally distributed with mean ha and variance hs2. However, it has
been shown that the standard option pricing model of Black and Scholes (1973) and Mer-
ton (1973) is inconsistent with option data for at least the last two decades. Looking at
empirical densities of log-returns from financial data, one observes the following stylized
features: there is more mass near the origin versus the normal distribution, less at the
sides than the normal and considerably more mass in the tails. This means that tiny price
movements occur with higher frequency, small and middle sized movements with lower
frequency, and big changes (high jumps) are much more frequent than predicted by nor-
mal distribution. Another point for consideration which seems to fit well with empirical
data is the asymmetric behavior of the log-returns. On the theoretical piece, Carr et al
(2001) suggest that price processes for financial assets must have a jump component but
they do not need to have a diffusion component. Their argument rests on recognizing
that all price processes of interest may be regarded as Brownian motion subordinated to
a random clock. These types of models do support the three points mentioned earlier. To
this end, recent literature recommends that a possible remedy for these three points is to
work with

Pt = P0 exp(Xt), t ≥ 0, (4.2)

instead of (4.1) where again P0 > 0 is the initial value of the risky asset, and {Xt : t ≥ 0}
is now a Gaussian subordinated process. On the basis of the Geman et al (2001) idea, we
propose the following result. We let {Xt : t ≥ 0} be a linear Brownian motion. Thus, the
characteristic function v̂ is expressed by

k(v) := ln µ̂(v) = ias− 1
2

s2v2 (4.3)

with s > 0 and a ∈ R. Next, we introduce {Tt : t ≥ 0} to be a stochastic time change
process, which is independent of {Xt = at+sBt : t ≥ 0}. This, again, is a one-dimensional
process. The process {Tt : t ≥ 0} is called subordinator if it is additive with homogeneous
increments, and it is non-decreasing (a.s.). It is known that subordinators are infinitely
divisible processes. Moreover, it is recognized that the cumulant generating function of a
subordinator satisfies the following representation:

E[e−uT1 ] := exp(ψ(−u)) = exp(ub0 +
∫ ∞

0
(e−ux−1)v0(dx)), (4.4)

where b0 ≥ 0 and v0 is a Lévy measure. In the present article, we assume that b0 =
0. Then, the subordinator is embedded into the Gaussian process to form the Gaussian
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subordinated process. It is a Lévy process and will be denoted by {X◦t : t ≥ 0} (see, e.g.,
Sato, 1999, Theorem 30.1, p.198). The Lévy and probability measures are expressed as
follows:

ṽ(B) =
1

(2πs2)1/2

∫ ∞

0

∫

B
exp(−(x−ay)2/2s2y)dxv0(dy), B ∈F and (4.5)

µ̃(B)=P(X◦t ∈B)=
1

(2πs2)1/2

∫ ∞

0

∫

B
exp(−(x−ay)2/2s2y)dxP(Tt ∈ dy), B∈F , (4.6)

where B is a Borel set and F is a σ -algebra. It is easy to show that when b0 = 0 the
subordinated Gaussian processes do not have a Gaussian component. To complete the de-
scription of subordinated processes, we also add that since {X◦t : t ≥ 0} is a Lévy process,
then its characteristic function satisfies the following representation:

ˆ̃µt(θ) = exp(−tψ(θ)),

where θ ∈ R. Note that since both {Xt : t ≥ 0} and {Tt : t ≥ 0} have right continuous
paths, then the process {X◦t : t ≥ 0} also has right continuous paths. Hence, for 0 ≤ u <
v < w < t < ∞ and θ1,θ2 ∈ R, we have

E[exp(iθ1(X◦v −X◦u )+ iθ2(X◦t −X◦w))]

= E[exp((iθ1a− 1
2

s2θ 2
1 )(Tv−Tu)+(iθ2a− 1

2
s2θ 2

2 )(Tt −Tw))]

= E[exp((iθ1a− 1
2

s2θ 2
1 )Tv−u +(iθ2a− 1

2
s2θ 2

2 )Tt−w)]

= exp(−(v−u)ψ(θ1)− (t−w)ψ(θ2)).

(4.7)

Upon (4.7), and the fact that {Tt : t ≥ 0} has both time and space homogeneity, it implies
that {X◦t : t ≥ 0} has both time and space homogeneity. In light of (4.6), the stochastic
process {X◦t : t ≥ 0} has a stochastic representation given by

X◦t = aTt + sBTt ≡ XTt , t ≥ 0. (4.8)

To provide some practical insight of the subordinatorąŕs meaning, we offer the fol-
lowing explanation. The link of real time with business time is described through the
subordinator Tt . That is to say, one assumes that the value of a given asset follows a
process X◦ = X ◦T because at real time t > 0, Tt units of business time have passed and
hence the value of the risky asset is positioned at XTt .

To tie together some of the theory described in Sections 2 or 3, we complete our
theoretical framework by presenting new results related to the exact distribution for sub-
ordinated Gaussian maxima without any proof. The proofs rely on first conditioning with
respect to subordinator and then integrating in terms of the subordinator.

Theorem 9. Let {X◦t : t ≥ 0} be a Gaussian subordinated process and the subordinator
Tt satisfies, Tt → ∞ a.s. as t→ ∞. Then, for x≥ 0,

1. P(X̄◦t ≥ x) = E[Φ(− x
s
√

Tt
+ a

s
√

Tt)+ e2ax/s2Φ(− x
s
√

Tt
− a

s
√

Tt)],

2. P(X̄◦∞ ≥ x) = e2ax/x2
,
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3. E[exp(−vJ◦+(∞))] =
(2 |a|√

2s
){(v+ a2

2s2 )
1/2− |a|√

2s
}

v , and

4. fJ◦+(∞)(t) =
1√
π

a2

s2

∫ ∞√
a2t
s2

e−y2

y2 dy, t ≥ 0,

where X ◦̄t ,X ◦̄∞ and J◦+(∞) are the analogs of X t̄ , X¯ , and J+(∞), respectively, of the
previous sections.

It can be noted that the distribution of the ultimum maximum X◦t ,t ≥ 0, or the density
of J◦+(∞) do not depend on the parameters of the subordinator Tt ,t ≥ 0.

5 Simulations, data analysis and concluding remarks
In this section, we wish to assess the performance of the derived asymptotic distri-

bution in Theorem 8 against the empirical distribution under various sample sizes and
various parameter choices. For demonstrating the closeness of the two distributions, we
find it convenient to utilize the total variation distance

dTV ( f∞, fn) = supB∈B|F∞(B)−F n̂(B)|=
1
2

∞
inf

0
| f∞(x)− f n̂(x)|dx, (5.1)

where f n̂(·) is the empirical probability distribution function. To exploit the right-hand-
side of (5.1), it is practical to employ its discrete version. In particular, we split a large
interval,[0,an], to equal sized, small in length, as 0 = x0 < x1 < · · · < xn = an < ∞ such
that xi = j h

an
with sufficiently small and an ∈ R sufficiently large. Thus, (5.1) can be

approximated by

dTV ( f∞, fn)≈
1
2
{|P(J◦+(∞)≤ h

2
)− f n̂(0)|

+Σn
j=1|P(J◦+(∞) ∈ (( j− 1

2
)h,( j+

1
2
)h))− f̂n( jh)|} (5.2)

Simulations are performed by letting the step function and sample sizes be as follows:
h = 0.1 and n = 1000, 2500 , 5000 and 10000. For each of the above cases, the drift a
is chosen to be a = -0.05, - 0.08, - 0.1 and -0.15. For the above cases, we assume that s
= 1. Further, for h = 0.1 and n = 500, 1000 , 2000 and 3000, and for the same choices
of a , we also consider the case of s = 0.5 . The results, based on 50,000 simulations,
are presented in Tables 1 and 2. As one may expect, the results show that there is an
excellent agreement between theoretical distribution and the empirical distribution. The
total variation distance decreases as the drift decreases.

To illustrate that financial data satisfy the three properties described in Section 4 and
the fact that the subordinated Gaussian model indeed fits well with the financial data, we
now apply our methodology to three data sets taken from three USA indices. The data
sets concerning daily logreturns of S&P 500, NASDAQ and NYSE for the period from
January 1, 2008 to December 31, 2010. For all three sets, we fit the NIG distribution.
This distribution is a member of a more general family, the GH family. Our preference
for the NIG distribution is due to its analytical tractability and the fact that the data appear
to fit extremely well. The stochastic representation of each log-return is now represented
by the random variable X◦1 expressed as X◦1 = aT1 + sBT1 , where T1 is inverse Gaussian
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a =−0.05 a =−0.08 a =−0.1 a =−0.15
n = 1000 0.2070 0.1163 0.0840 0.0544
n = 2500 0.1315 0.0852 0.0745 0.0640
n = 5000 0.1206 0.0976 0.0881 0.0686

n = 10000 0.1423 0.1115 0.0942 0.0644

Table 1: Total variation distances of theoretical and empirical distributions (based on
50,000 simulations) of the time the process reaches ultimum maximum when s = 1

a =−0.05 a =−0.08 a =−0.1 a =−0.15
n = 500 0.1368 0.0661 0.0514 0.0408

n = 1000 0.0861 0.0534 0.0504 0.0462
n = 2000 0.0735 0.0575 0.0549 0.0463
n = 3000 0.0772 0.0635 0.0528 0.0450

Table 2: Total variation distances of theoretical and empirical distributions (based on
50,000 simulations) of the time the process reaches ultimum maximum when s = 0.5

distributed with density given by fT1(t) =
δ√
2π

exp(δγ)t−
3
2 exp(− 1

2 (δ
2t−1 + γ2t)), t ≥ 0

Note that the location parameter in this model is zero and the parameter a , which rep-
resents the drift in the process X◦t , t ≥ 0 , is now the skewness parameter of the random
variable X0

1 . To estimate the parameters a , s , δ and γ , we use the EM algorithm (Demp-
ster et al., 1977). The EM algorithm is an iterative procedure that converges under rather
weak conditions to a local maximum of the likelihood function. In this article, we shall
only present the estimate values of the parameters and some interesting figures to show
the tightness between the theoretical and empirical results. If one is interested to know
more about the EM procedure, we refer the reader to Aas and Haff (2006), Karlis (2002)
or Protassov (2004). The three sets of data we compiled and presented in Figure 1(a)-
1(c) show the time series behavior and illustrate the jump component. They are daily
logarithmic returns for the period from January 1, 2008 to December 31, 2010. If the
jumps are suppressed, then the random time is locally deterministic. It has been observed
(Barndorff-Nielsen and Shephard, 2001) that the volatility term is both stochastic and usu-
ally clustered, which is clearly indicated in Figures 1(a)-1(c). The clustering component
appears to occur between September of 2008 to June of 2009 and April 2010 to August
2010 and this is consistent to all three indices.

To illustrate the goodness-of-fit of the three data sets, we provide QQ plots of the
corresponding logarithmic returns against both Gaussian and the NIG distribution. If the
comparisons are done against the Gaussian distribution, one can easily observe that both
right and left tail are heavier than normal. However, if one compares the ordered data
against the NIG scores, it can be seen that the data fit extremely well.

To illustrate the asymmetry of the shape of the data, we overlaid on the histogram the
NIG distribution. It appears that the right tail is lighter than the left tail. It is also evident
that the NIG distribution fits well in all three sets of the observed data.

The values of the estimates were a= -4.8978, s=1, δ= 0.0046 and γ= 66.1971 for the
S&P 500, a= -4.1101, s=1, δ= 0.0056 and γ= 74.2608 for NASDAQ and a= -5.1098,
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FIG. 2.  Time series plots of USA log-returns indices for the period from January 1, 2008 to December 31, 

2010 for S&P 500 in (a), for NASDAQ in (b) and for NYSE in (c). 
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Figure 2: Time series plots of USA log-returns indices for the period from January 1,
2008 to December 31, 2010 for S&P 500 in (a), for NASDAQ in (b) and for NYSE in (c).

s=1, δ= 0.0049 and γ= 66.1993 , for NYSE. We stopped the EM procedure when the
distance between successive iterations (distance of estimate values of parameters between
successive iterations) was smaller than 10−10.

Barndorff-Nielsen and Prause (2001) also identify two more measures that can play
a significant role in recognizing the shape distribution of NIG, the steepness ξ and the
asymmetry χ . These parameters are functions to the NIG model parameters and can be
derived using the expressions ξ = {1+δ (α2−a2)}− 1

2 ,χ = f racaξ α , where the param-
eter α is determined by α = {γ2 + a2} 1

2 . Their estimate values for the specific data sets
are: ξ =.8755 ,χ=-0.0646 , ξ =.8404 ,χ=-0.0464 and ξ =.8689 ,χ=-0.0669 , for S&P 500,
NASDAQ and NYSE, respectively. It is also noted (Barndorff-Nielsen and Prause, 2001)
and empirically verified that the estimate value of ξ for financial data lies in the interval
[0.7, 0.9] . This is also true for the above sets.

To demonstrate the applicability of the density described in Theorem 9(4), we con-
fine our data analysis to only the 2008 period. This is an event based approach, i.e., we
consider a segment of time that an event occurs only in a specific location (USA). It is
well documented (National Bureau of Economic Research) that from January of 2008 to
the end of the same year the US economy was in recession. This is exactly the reason
we consider our analysis only for the year of 2008. We found that the estimate parameter
a for the year 2008 for the three indices S&P 500, NASDAQ and NYSE were -5.8472,
-5.4182 and -6.8231, respectively. Note that the parameters for the subordinator are not
required in this analysis. Using these values as parameters, we found that the 95% cover-
age probability were 2, 2, 1 days. It should be noted that the coverage probability is very
small. In all three cases, the observed time at which the maximum occurred was at zero.
This clearly confirms our findings.
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Figure 3: QQ plots of USA indices against normal distribution for S&P 500 in (a), for
NASDAQ in (b) and for NYSE in (c).

In the preceding sections, we considered various statistical facts that emerged from
empirical evidence studying financial prices and we proposed that the subordinated Gaus-
sian process is an excellent candidate to model asset prices. Our empirical findings sug-
gest that the recommended model performs extremely well. Contingent upon the fact that
the subordinated process is the right scheme, we obtained a distribution for the time it
takes a subordinated Gaussian process to reach its maximum. We applied this distribution
to the USA indices for a recession period, which constitutes an event based period. Our
data findings strongly support this specific distribution.
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