The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19-23, 2010
Copyright © 2010 ORSC & APORC, pp. 512-518

Perfect Sorting by Reversals and
Deletions/Insertions

Hong-Yu Chen'! Xiang Tan?! Guo-Jun Li'*

I'School of Mathematics, Shandong University,
Jinan, Shandong, 250100, China

2School of Statistics and Mathematics, Shandong University of Finance,
Jinan, Shandong, 250014, China

Abstract Recently, more and more people are interested in the problem of computing a sequence
of rearrangement operations to transform one genome into the other such that these operations
conserve all common intervals. Bérard et al. show an algorithm to solve the problem in subquadratic
time when all operations are reversals. In this paper, we extend the result to allow deletions and a
limited form of insertions (which forbids duplications), allowing to compare genomes containing
different genes. We provide an exact algorithm for the asymmetric case and a heuristic algorithm
for the symmetric case.

Keywords algorithm, perfect sorting, common intervals

1 Introduction

Genome rearrangement problem is to infer a sequence of rearrangement operations
which transform one genome into other genome, minimizing the number of rearrange-
ment operations. In [6], Hannenhalli and Pevzner (HP) developed the first polynomial
algorithm for sorting by reversals. El-Mabrouk extended that result to allow deletions and
a limited form of insertions (which forbids duplications) in [4].

Recently, another combinatorial framework for sorting by reversals was proposed,
called perfect sorting by reversals [5]. It is to infer a minimum number of reversals that
don’t break any common interval of the considered genome. For this problem, the first
algorithm proposed has an exponential worst-case running time [5]. Bérard et al. [1] im-
proved it by showing that the problem is fixed parameterized tractable [3] (FPT): i.e., the
complexity function is f(p) -n%M for some parameter p, where p is the number of prime
edges of the strong interval tree of the signed permutation. Recently, they described a
more efficient algorithm for the problem in [2]. The worst-case time complexity of their
algorithm is parameterized by the maximum prime degree d of the strong interval tree,
ie., f(d) -n°0), where d is always smaller than or equal to the number of prime edges
p- In [7], it was showed that when, for a signed permutation, there exists a parsimonious
scenario that is also a perfect scenario, computing such a scenario can be done in polyno-
mial time. In this paper, we will extend the result of [1] to include deletions and insertions
of gene segments, allowing to compare genomes containing different genes.

*Corresponding author. E-mail address: guojun@csbl.bmb.uga.edu

Perfect Sorting by Reversals and Deletions/Insertions 513

Some notation and definitions are introduced in Section 2, then we extend Bérard’s
method to take into account deletions or insertions in Section 3 and deletions and inser-
tions in Section 4.

2 Preliminaries

A signed permutation on n elements is a permutation on the set of integers {1,2,...,n}
in which each element has a sign, positive or negative. An interval of a signed permu-
tation is a segment of consecutive elements of the permutation. One can define an in-
terval by giving the set of its unsigned elements, called the content of the interval. The
reversal of an interval of a signed permutation reverses the order of the elements of the
interval, while changing their signs, that is, a reversal p(i, j) rearranges the genes inside
the genome and transforms the genome (x] ... x;— 1 XXj+1 ... X X1 e .Xp) into the genome
(1 ... X1 —Xj... = Xig] — XiXjq ...Xn). We denote G- p as the new genome obtained
from genome G as a result of a reversal p. If P is a permutation, we denote P the permu-
tation obtained by reversing the complete permutation P.

Let G and H be two signed permutations. A scenario between G and H is a sequence
of rearrangement events (reversal, deletion, insertion) that transforms G into H, or G into
H. The length of such a scenario is the number of rearrangement events it contains.

Two distinct intervals I and J commute if their contents trivially intersect, that is,
either I C J, or J C I, or INJ = 0. Else, they overlap. We call a reversal p(i, j) breaks
an interval I = (x,...xp) if the two intervals (x;...x;) and (x,...x) overlap. If there is
a reversal p;(1 <i<t) of a reversal sequence py,...,p, breaks I, we call the reversal
sequence pPi,...,P; breaks /.

A common interval of a permutation G and H is an interval in both G and H. The
singletons in both G and H are called ¢rivial common intervals.

A scenario S between G and H is called a perfect scenario if every element of S does
not break any common interval of G and H. A perfect scenario of minimal length is called
a parsimonious per fect scenario.

Let G and H be two genomes with some genes in common, others specific to each
genome, and no gene appearing more than once. Write <7 for the set of genes in both G
and H, and .2/ and @7y for those in G and H only respectively.

3 The algorithm
3.1 Background

Given two genomes G and H with .27z = o/ = 0, the problem of sorting by reversals
is to find the minimum number of reversals that transform G into H. It is solved by
Hannenhalli and Pevzner [6]. They gave an exact polynomial algorithm, denoted by HP
algorithm.

For two genomes G and H with <75 # 0, @y = 0, El-Mabrouk [4] gave a new method
to represent G and H by the breakpoint graph ¢4 (G, H), and presented an algorithm that
transforms genome G to H, called Reversal-deletion algorithm.

Indeed, it is commonly accepted in computational biology, that if a group of homol-
ogous genes (that are genes having a common ancestry) is co-localized in two different

514 The 9th International Symposium on Operations Research and Its Applications

species, then those genes were probably together in the common ancestor and were not
later separated during evolution. Such conserved clusters of homologous genes are called
common intervals.

A reversal p(i, j) is called perfect if it doesn’t break any common interval of G. The
problem of perfect sorting by reversals is to find a reversal sequence pi,...,p; such
that p;(i = 1,...,t) doesn’t break any common interval of G, G-p;...p, = H and ¢ is
minimum, where <7 = @y = 0. It is solved by Bérard et al. in [1] and [2]. We call their
algorithm BBCP algorithm.

3.2 Perfect sorting by reversals and deletions (or insertions)

From this section, our goal is to propose algorithms for finding the minimum number
of rearrangement operations (reversals, insertions and deletions) necessary to transform
genome G into genome H such that they don’t break any common interval of G.

First, we consider the case when <7 # 0, o7y = (. It is obvious we only need reversals
and deletions to transform G into H, and the genes of .o are destined to be deleted.

The following lemma from [5] is fundamental.

Lemma 1. If a sequence of reversals sorts a permutation and does not break an interval
1, then there exists a sorting sequence of same size (with the same reversals) in which all
the reversals contained in 7 (they sort /) are before all the other reversals (they sort outside
I).

The following theorem is immediately by Lemma 1. It is the basic idea of our algo-
rithms.

Theorem 1. If a sequence of reversals, insertions and deletions sorts a signed per-
mutation and does not break any common interval, then there exists a sorting sequence
of same size (with the same reversals, insertions and deletions), in which all the rever-
sals contained in the common intervals are before all the other reversals, insertions and
deletions.

Proof. It is obvious that all the reversals contained in the common intervals are before
all the other reversals by Lemma 1. Since any insertion or deletion doesn’t break any
common interval, that is, the insertions and deletions are external to all the common
intervals, so the insertions and deletions don’t overlap with the reversals contained in
the common intervals. Hence all the reversals contained in the common intervals could
be located before the insertions and deletions. The result follows. [

Example : Let G= (1 —3 —275 —46),H=(45123)

The common intervals of G and H are {2,3}, {1,2,3}, {4,5} and the singletons {1},
{2}, {3}, {4} and {5}.

Reversals {1,2,3,4,5,7}, {1,2,3,6}, {2,3}, {5} and deletion {6,7} is a perfect sce-
nario that transforms G into H.

Change the reversals’ order such that all the reversals contained in the common in-
tervals are before all the other reversals, deletions, that is, the reversals {2,3}, {5},
{1,2,3,4,5,7},{1,2,3,6} and deletion {6,7} is also a perfect scenario that transforms G
into H.

The general idea of our algorithm is as follows: since the sequence of reversals, in-
sertions and deletions can be rearranged such that the reversals contained in the common

Perfect Sorting by Reversals and Deletions/Insertions 515

intervals are before all the other operations by Theorem 1, we can sort the common inter-
vals of G first, then transform the obtained permutation G to the other permutation H by
El-Mabrouk’s method.
Let P={P,Ps,...,P} be a subset of common intervals of G and H, where |F;| > 2,
every other common interval is a subsetof , (1 <i<k)and NP =0 (1 <i,j <k).
Now we give the following algorithm to solve the problem of perfect sorting by rever-
sals and deletions.

Algorithm 1: Perfect sorting by reversals and deletions

S is an empty scenario.

For each common interval P; C P, denote S; be the corresponding
scenario by applying BBCP algorithm
Add S; to S.
Denote the obtained permutation after executing the reversals of each
S;by G.

End for

For G and H, applying Reversal-deletion algorithm to transform G
to H, denote S’ be the corresponding scenario
Add S toS.

End for

Theorem 2. Algorithm 1 performs RD(G,H) = R(G,G)+ RD(G ,H) reversals and
deletions, where R(G7G/) is the total number of reversals that sort each P; of P, and

RD(G ,H) =R(G ,H)+D(G ,H) is the reversals and deletions that transform G’ into H.
Moreover, RD(G,H) is the minimum number of rearrangement operations necessary to
transform G into H and don’t break any common interval.

Proof. First, we prove Algorithm 1 is feasible.

Since the reversals contained in each common interval can exist before all the other
reversals and deletions by Theorem 1, Algorithm 1 sorts each maximal common interval
first. In the breakpoint graph ¢ (G/,H), the vertices corresponding to the genes of each
common interval P; belong to the cycles of size 1 by the definition of breakpoint graph.
Since applying Reversal-deletion algorithm doesn’t affect the cycles of size 1, then the
step of transforming G toH by Reversal-deletion algorithm doesn’t break any common
interval and the deletions don’t affect the common interval obviously. Hence Algorithm
1 is feasible.

By BBCP algorithm, R(G, G’) reversals sorting each P; of P is minimum. By the

Reversal-deletion algorithm, R(G',H) + D(G',H) is minimum. Hence, RD(G,H) =
R(G,G,) +RD(G/,H) is the minimum number of rearrangement operations necessary
to transform G into H. The result follows. [J

The case <7/ = 0, o7y # 0, where the set of genes of G is a subset of the set of genes
of H, i.e. the problem of transforming G into H with a minimum number of reversals and
insertions such that the operations don’t break any common interval, can be solved by
Algorithm 1, where G takes on the role of H, and vice versa. Each deletion in the H-to-G
solution becomes an insertion in the G-to-H. Each reversal in one direction corresponds
to a reversal of the same segment in the opposite direction.

516 The 9th International Symposium on Operations Research and Its Applications

3.3 Perfect sorting by reversals, deletions and insertions

First, we give the following definition.
Definition[4]: the filled genome of G

Let G and H be two genomes that o7 = 0, ¢ be the graph containing only cycles of
size 1 obtained by applying the HP algorithm to the graph ¢ (H,G). Each indirect black
edge of ¥ is labeled by a sequence of genes of «7y. The genome G° obtained from G
as follows: for each pair of adjacent vertices a and b in G, if (a,b) is an indirect black
edge of ¢4 labeled by the sequence of genes y,...,y, of @, then insert this sequence of
genes between a and b in G. We call G° the filled genome of G relative to H.

Now, we consider the general case where .27 # 0 and @7y # 0.

Let G = G\ .o/, H = H\ o, G be the filled genome of G relative to H, a and b be
two adjacent vertices in G, separated in G by a segment X (a) of vertices of .«7;. If a and
b are separated in G¢ by a segment Y (a) of vertices of 7, then we have the choice to
place X (a) before or after Y (a). This choice is made so that we require as few deletions as
possible to transform G¢ into H. By G we denote the genome obtained by appropriately
adding the vertices of <7 to G°. The graph ¥(G°,H) is obtained from ¥ (G°,H) by
transforming certain black edges of ¢ (C~}C,H) into indirect edges. El-Mabrouk [4] gave
the construction of G¢, called Procedure Construct-G¢.

Now we give the algorithm of perfect sorting by reversals, deletions and insertions.

Algorithm 2: Perfect sorting by reversals, deletions and insertions.

Step 1. For each common interval P, C P, i = 1,...,k, apply BBCP algorithm to sort
them respectively.

Denote the obtained permutation from G by G.
Step 2. Apply the HP algorithm to the graph ¢ (H,G').
The final graph obtained contains D(H,G') indirect edges.

Step 3. Do the D(H, 5’) insertions deducible from the indirect edges, and transform
GG .

Step 4. Fill the genome 5’C to obtain genome Gge, using Procedure Construct-G¢.

Step 5. Apply Reversal-deletion algorithm to the graph (G ©,H). The algorithm
does R(&',ﬁ) reversals and D(G ¢, H) deletions.

Lemma 2 [4] The number of rearrangement operations that transform G toH during
the application of the method is RDI(G ,H) = R(G',H) + D(H,G') + D(G,H), where
R(G',H) is the number of reversals, D(H,G') is the number of insertions and D(G'*, H)

is the number of deletions. Moreover, if D(G,H) = D(G',H), then the total number of
rearrangement operations is minimal.

Theorem 3. Algorithm 2 performs RDI(G,H) = R(G,G) + RDI(G ,H) reversals,
deletions and insertions, where R(G, G') is the total number of reversals that sort each F;
of P, and RDI(G ,H) = R(G',H) +D(H,G') +D(G*,H) is the reversals, deletions and
insertions that transform G’ into H. Moreover, the rearrangement operations necessary to

Perfect Sorting by Reversals and Deletions/Insertions 517

transform G into H don’t break any common interval and if D(G'*,H) = D(G ,H), then
it is minimal.

Proof. By Theorem 1, we can sort each common interval first, then transform the
obtained genome to H. After Step 1, in the graph 4 (H,G') and ¥ (G.H), the vertices
corresponding to the genes of each common interval P; belong to the cycles of size 1.
With a similar proof to that of Theorem 2, Step 2 to Step 5 doesn’t break any common
interval. So Algorithm 2 is feasible.

It is obvious Algorithm 2 performs RDI(G,H) = R(G,G) +R(6’J—7) +D(H, (E’) +
D(G',H) by the five steps.

By BBCP algorithm, R(G, G,) reversals that transform G to G is minimal. By Lemma
2,if D(G'°,H) = D(G , H), then the total number of rearrangement operations R((? JH)+

D(H,é') +D(G',H) that transform G to H is minimal. So if D(G¢,H) = D(G ,H),
then the rearrangement operations necessary to transform G into H is minimal. The result
follows. [

Lemma 3([1]) Assume m = max(|P||i = 1,...,k). The transformation of G to G’
by BBCP algorithm is of time complexity O(m+/mlogm) if each Ts(P;) is unambiguous;
O(2Pm+/mlogm), if there is some ambiguous Ts(P;), where p is the maximum number of
unsigned prime vertices of Ts(P;).

Lemma 4([4]) Assume n = max(|.</| + ||, | /| + | 74|). The transformation of G’
to H by El-Mabrouk’s method is of time complexity O(n?).

It is obvious that n > m. By Lemma 3 and Lemma 4, the following theorem is imme-
diately.

Theorem 4. The transformation of G to H by Algorithm 2 is of time complexity
O(n?), when each Tg(P;) is unambiguous; O(2Pm+/mlogm + n*), when there is some
ambiguous Ts(P;), where p is the maximum number of unsigned prime vertices of Ts(P;).

4 Conclusion

Our main result in this note is an algorithm that finds the minimum rearrangement
operations necessary to transform genome G into H, where G and H have different genes,
such that these operations don’t break any common interval. Obviously, in such case,
insertions or deletions are needed. We combine a strong interval tree with a breakpoint
graph to show how to extend the BBCP algorithm to an algorithm that allows deletions
and a limited form of insertions.

The next step of this work will be to generalize our approach to handle duplications as
well as insertions and present an algorithm for computing (near) minimal edit sequences
involving insertions, deletions and reversals.

Acknowledgements

This work was supported by National Natural Science Foundation of China (10971121,
60873207, 60373025), and also partially supported by Graduate Independent Innovation
Foundation of Shandong University (11140070613071).

518 The 9th International Symposium on Operations Research and Its Applications

References

[1] S. Bérard, A. Bergeron, C. Chauve, C.Paul, Perfect sorting by reversals is not always difficult,
IEEE/ACM Trans. Comput. Biology Bioinform, 4(1) (2007) 4-16.

[2] S. Bérard, C. Chauve, C.Paul, A more efficient algorithm for perfect sorting by reversals, In-
formation Processing Letters, 106 (2008) 90-95.

[3] R.G. Downey, M.R. Fellows, Parameterized Complexity, springer, 1999.

[4] N. El-Mabrouk, Genome rearrangement by reversals and insertions/deletions of contiguous
segments, In proceeding 11th Ann. Symp. Combin. Pattern Matching CPM 00, London:
springer, 1848 (2000) 222-234.

[S] M. Figeac, J.-S Varré, Sorting by reversals with common intervals, Proceedings of WABI 2004,
Lecture Notes in Computer Sciences, Berlin: springer, 3240 (2004) 26-37.

[6] S. Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip (Polynomial algorithm for
sorting signed permutations by reversals) In proceedings of the 27th Annual ACM-SIAM Sym-
posium on the Theory of Computing, (1995) 178-189.

[71 M. -F. Sagot, E. Tannier, Perfect sorting by reversals, Proceedings of COCOON 2005, Lecture
Notes in Computer Sciences, Berlin: springer, 3595 (2005) 42-52.

