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Abstract We study an M/M/2 queueing system with two heterogeneous servers under a variant
vacation policy, where the two servers may take together at most J vacations when the system is
empty. A quasi-birth-and-death process is formulated to analyze the system. We obtain the explicit
expressions of the stationary distribution of the system size and the mean system size. We also show
that the number of vacations that the servers take continuously under the condition that the servers
are in vacation follows a truncated geometric distribution. The conditional stochastic decomposition
properties of the queue length and the waiting time are established for such a system.
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1 Introduction
Queueing systems with vacations have been developed for a wide range of applica-

tions in flexible manufacturing systems, service systems and telecommunication systems
over more than two decades. Server vacations may occur due to a lack of work, server
failure, or another task being assigned to the server. The amount of literature relating to
queueing models with vacations is growing rapidly, as can be seen in survey papers by
Doshi [1], [2] and Takagi [3].

Most of the literature on multi-server queueing systems generally assume the servers
to be homogeneous. This assumption may be valid only when the service process is highly
mechanically or electronically controlled. In a queueing system with human servers, the
above assumption can hardly be realized. However, there are only a few studies on multi-
server queues with vacations in which the service rates of the servers are not identical.

Neuts and Takahashi [4] have pointed out that for the queueing systems with more than
two heterogeneous servers, analytical results are intractable. Based on this observation,
several authors focused their studies on queues with two heterogeneous servers. Singh [5]
studied an M/M/2 queueing system with balking and two heterogeneous servers. Kumar
and Madheswari [6] studied an M/M/2 queueing system with two heterogeneous servers
and multiple vacations by using the matrix-geometric solution method. Yue et al. [7]
further considered the model in [6]. They obtained the explicit expression of the rate
matrix and presented the conditional stochastic decomposition results for the queue length
and the waiting time.
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Madan et al. [8] studied an M/M/2 queue with Bernoulli schedules and a single vaca-
tion policy where the two servers provide heterogeneous exponential service to customers.
They obtained the steady-state probability generating functions of the system size for var-
ious states of the servers. Yue and Yue [9] studied an M/M/2 queueing system with
balking and two heterogeneous servers under Bernoulli schedules and a single vacation
policy. They presented a generalization of Model B in Madan et al. [8] and obtained the
explicit expressions of the steady state condition, the stationary distribution of the system
size, and the mean system size.

In this paper, we consider an M/M/2 queueing system with two heterogeneous servers
under a variant vacation policy, where the two servers may take together at most J vaca-
tions when the system is empty. This type of vacation policy is called a variant vacation
policy in [10].

The rest of the paper is organized as follows. Section 2 presents a model descrip-
tion and a quasi-birth-and-death (QBD) model formulation. In Section 3, we obtain the
stationary distribution of the system size and the mean system size. We also show that
the number of vacations that the servers take continuously under the condition that the
servers are in vacation follows a truncated geometric distribution. Section 4 presents the
two conditional stochastic decomposition properties for the stationary distribution of the
queue length and the waiting time. Conclusions are given in Section 5.

2 Model Formulation
In this paper, we consider an M/M/2 queueing system with two heterogeneous servers

under a variant vacation policy. The assumptions of the system model are as follows:
Arrivals of customers follow a Poisson process with rate λ . Arriving customers form

a single waiting line based on the order of their arrivals. The total number of potential
customers and the system capacity are assumed to be infinite.

Whenever the system becomes empty, the two servers leave for a vacation together
with random length V . If no customers are found in the queue when the two servers
return from the vacation, they again leave for another vacation with the same length. This
pattern continues until they return from a vacation to find at least one customer waiting in
the queue, or they have already taken J vacations. If no customers are found by the end of
the Jth vacation, the servers stay in the system until one customer arrives. If at least one
customer presents in the waiting line for service when the servers return from a vacation,
or the servers stay dormant in the system, they immediately start serving the waiting
customers until the system becomes empty. The vacation time V follows an exponential
distribution with rate θ .

The two servers provide heterogeneous exponential service to customers on a first-
come first-serviced (FCFS) basis with service rates µk, for the kth server, k = 1,2. When
both servers are free, then a new arriving customer chooses the first server to get the
service.

Furthermore, various stochastic processes involved in the system are independent of
each other.

Let N(t) be the number of customers in the system at time t and let L(t) = j, while
j = 0,1, ...,J,J+1, denotes the status of the servers at time t. That is, the state (i, j) means
that i (i≥ 0) customers are in the system while both servers are taking ( j+1)th vacation,
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j = 0,1, ..,J− 1. The state (0,J) means that the system is empty while both servers are
free. The state (1,J) means that one customer is in the system while Server 1 is busy and
Server 2 is free. The state (1,J+1) means that one customer is in the system while Server
1 is free and Server 2 is busy. The state (i,J) means that i (i ≥ 2) customers are in the
system while both servers are busy. Then {(N(t),L(t)), t ≥ 0} is a quasi-birth-and-death
(QBD) process with a state space denoted by Ω as follows:

Ω = {(1,J+1)}∪{(i, j), i≥ 0, j = 0,1, ...,J}.

We define the levels 000, 111, 222, ..., as the set of the states 000 = {(0, j), j = 0,1, ...,J},
111 = {(1, j), j = 0,1, ..., j+1, and iii = {(i, j), j = 0,1, ...,J} if i≥ 2, where the elements of
the sets are arranged in lexicographical order. Using elementary arguments, the process
{(N(t),L(t)), t ≥ 0} has a transition rate matrix QQQ which has a block-tridiagonal structure
given by

QQQ =




BBB00 BBB01
BBB10 BBB11 BBB12

BBB21 AAA1 AAA0
AAA2 AAA1 AAA0

AAA2 AAA1 AAA0
· · ·

· · ·




.

Matrix QQQ is an infinitesimal generator of the Markov process {(N(t),L(t)), t ≥ 0} and
is in the format of a quasi-birth-and-death (QBD) process. The sub-matrices AAA0, AAA1, and
AAA2 are of order (J+1)× (J+1). They are given by AAA0 = λ III,

AAA1 =




−(λ +θ) 0 · · · 0 θ
0 −(λ +θ) · · · 0 θ
...

...
...

...
0 0 · · · −(λ +θ) θ
0 0 · · · 0 −(λ +µ1 +µ2)



,

AAA2 =




0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
0 0 · · · 0 µ1 +µ2




where III is a (J+1)× (J+1) identity matrix. The boundary sub-matrices are defined by

BBB00 =




−(λ +θ) θ 0 · · · 0 0
0 −(λ +θ) θ · · · 0 0
...

...
...

...
...

0 0 0 · · · −(λ +θ) θ
0 0 0 · · · 0 −λ



,
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BBB01 =




λ 0 · · · 0 0 0
0 λ · · · 0 0 0
...

...
...

...
...

0 0 · · · λ 0 0
0 0 · · · 0 λ 0



, BBB10 =




0 0 · · · 0
0 0 · · · 0
...

...
...

µ1 0 · · · 0
µ2 0 · · · 0



,

BBB11 =




−(λ +θ) 0 · · · 0 θ 0
0 −(λ +θ) · · · 0 θ 0
...

...
...

...
...

0 0 · · · −(λ +θ) θ 0
0 0 · · · 0 −(λ +µ1) 0
0 0 · · · 0 0 −(λ +µ2)



,

BBB12 =




λ 0 · · · 0 0
0 λ · · · 0 0
...

...
...

...
0 0 · · · λ 0
0 0 · · · 0 λ
0 0 · · · 0 λ



, BBB21 =




0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
0 0 · · · µ2 µ1




where BBB00 is a (J + 1)× (J + 1) matrix, BBB01 and BBB21 are (J + 1)× (J + 2) matrices, BBB10
and BBB12 are (J+2)× (J+1) matrices, BBB11 is a (J+2)× (J+2) matrix.

3 Steady-State Analysis
In this section, we first derive the condition for the system to reach a steady state.

Then, we obtain the matrix-geometric solution for the steady-state probabilities. Based
on the explicit expressions of these probabilities, we derive some performance measures.

3.1 Stability Condition
We now derive the condition for the system to reach a steady state. We define matrix

AAA = AAA0 +AAA1 +AAA2. It is readily known that AAA is an irreducible generator of a Markov pro-
cess. Let πππ = (π0,π1, ...,πJ) be the stationary probability vector of this Markov process.
Then, πππ satisfy the linear equations: πππAAA = 000 and πππeee = 1, where eee is a column vector of
order J + 1 with all its elements equal to one. Solving these equations, we have πi = 0,
for i = 0,1, ...,J−1, and πJ = 1.

By using Theorem 3.1.1 in [11], the condition πππAAA0eee < πππAAA2eee is the necessary and
sufficient condition for stability of the QBD process. After some routine manipulation,
the stability condition becomes as

ρ =
λ

µ1 +µ2
< 1. (1)
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3.2 Matrix-geometric Solution
Let N and L be the stationary random variables for the system size and the status of

the servers. We denote the stationary probability by

xi j = P{N = i,L = j}= lim
t→∞

P{N(t) = i,L(t) = j}, (i, j) ∈Ω.

Under the stability condition ρ < 1, the stationary probability vector xxx of the generator
QQQ exists. This stationary probability vector xxx is partitioned as xxx = (xxx0,xxx1,xxx2, ...), where
xxx0 = (x00,x01, ...,x0J), xxx1 = (x10,x11, ...,x1J+1), and xxxi = (xi0,xi1, ...,xiJ) for i≥ 2.

Based on the matrix-geometric solution method developed by Neuts [11], the station-
ary probability vector xxx = (xxx0,xxx1,xxx2, ...) is given by

xxx0BBB00 + xxx1BBB10 = 0, (2)
xxx0BBB01 + xxx1BBB11 + xxx2BBB21 = 0, (3)
xxx1BBB12 + xxx2(AAA1 +RRRAAA2) = 0, (4)
xxxi = xxx2RRRi−2, i = 3,4,5, ... (5)

and the normalizing equation

xxx0eee+ xxx1eee1 + xxx2(III−RRR)−1eee = 1 (6)

where eee1 is a column vector of order J+2 with all their elements equal to one, and matrix
RRR, called the rate matrix, is the minimal non-negative solution of the matrix quadratic
equation

RRR2AAA2 +RRRAAA1 +AAA0 = 000, (7)

and the spectral radius of the rate matrix RRR is less than one.
In order to obtain the explicit expression of the rate matrix RRR, we need to solve the

matrix quadratic equation (7). The next theorem gives the explicit expression of the rate
matrix RRR. The proof of Theorem 1 is omitted.

Theorem 1. If ρ < 1, the matrix Eq. (7) has the minimal non-negative solution as follows:

RRR =




λ
λ +θ

III ρeee

000 ρ


 (8)

where III is a (J+1)× (J+1) identity matrix, and eee is a column vector of order J+1 with
all its elements equal to one.

Based on an explicit expression of the rate matrix RRR given by Theorem 1, we can solve
Eqs. (2), (3), (4) and (6) to obtain the explicit expressions of the boundary probability
vectors xxx0, xxx1 and xxx2 under the stationary condition ρ < 1. Defining that

f =
1

λ +θ

[
1−
(

θ
λ +θ

)J
]
, (9)

g =
1
λ
+

[
1+

λ
θ(1−ρ)

]
f (10)
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and

h =
ρ(1+µ1 f )

1+ρ(1−µ1 f )
. (11)

Theorem 2. If ρ < 1, the elements of the boundary probability vectors xxx0, xxx1 and xxx2 are
given by

x00 =
µ1

λ +θ
(1+h)K, (12)

x0 j =

(
θ

λ +θ

) j

x00, j = 0,1, ...,J−1, (13)

x0J =
θ
λ

(
θ

λ +θ

)J−1

x00, (14)

x1 j =
λ

λ +θ

(
θ

λ +θ

) j

x00, j = 0,1, ...,J−1, (15)

x1J = K, x1J+1 =
µ1

µ2
hK, (16)

x2 j =

(
λ

λ +θ

)2( θ
λ +θ

) j

x00, j = 0,1, ...,J−1, (17)

x2J =

(
1+

λ
µ2

)
hK (18)

where

K =

[
1+µ1g(1+h)+

1
µ2

(
µ1 +

λ +µ2

1−ρ

)
h
]−1

. (19)

Proof. Using the expression of RRR in Theorem 1, we can obtain the results of Theorem 2.
The details of the proof are omitted.

From Eq. (5), by using Theorem 1 and Theorem 2 we can obtain the probability vector
xxxi, for i≥ 3. Define that

φn =
n

∑
j=1

(
λ

λ +θ

)n− j

ρ j, n≥ 1. (20)

Theorem 3. If ρ < 1, the elements of the probability vector xxxi for i≥ 3 are given by

xi j =

(
λ

λ +θ

)i( θ
λ +θ

) j

x00, j = 0,1, ...,J−1, (21)

xiJ = φi−2
λ

λ +θ

[
1−
(

θ
λ +θ

)J
]

x00 +ρ i−2x2J (22)
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where x00 is given by Eq. (12), and x2J is given by Eq. (18).

Proof. Using Theorem 1, we obtain

RRRn =



(

λ
λ +θ

)n

III φneee

000 ρn


 (23)

for n≥ 1, where φn is defined by Eq. (20). Substituting this expression into Eq. (5) yields
xi j in Eqs. (21) and (22) for i≥ 3 and j = 0,1, ...,J.

3.3 Performance Measures
Let xi = P(L = i), i = 0,1,2..., be the stationary probability that there are i customers

in the system. The following theorem gives the stationary distribution of the system size.

Theorem 4. If ρ < 1, the distribution of the system size is given by

x0 =

(
1+

θ
λ

)
x00, (24)

x1 =
1
ρ

x2J , (25)

x2 =
λ

λ +θ

[
1−
(

θ
λ +θ

)J
]

x00 + x2J , (26)

xi =

[(
λ

λ +θ

)i−2

+φi−2

]
λ

λ +θ

[
1−
(

θ
λ +θ

)J
]

x00 +ρ i−2x2J , i = 3,4, ... (27)

where x00 is given by Eq. (12), and x2J is given by Eq. (18).

Proof. The results of Theorem 4 are obtained by using Theorem 2 and Theorem 3. The
details of the proof are omitted.

Corollary 1. If ρ < 1, the mean system size is given by

E(N) =
λ

θ(1−ρ)

(
2+

λ
θ
+

ρ
1−ρ

)[
1−
(

θ
λ +θ

)J
]

x00 +
1

ρ(1−ρ)
x2J (28)

where x00 is given by Eq. (12), and x2J is given by Eq. (18).

Proof. The result of Corollary 1 can be obtained by using Theorem 4. The details of the
proof are omitted.

Let NV be the number of vacations that the servers have taken under the condition
that the servers are in vacation. The next theorem shows that NV follows the truncated
geometric distribution. The proof of next theorem is omitted.

Theorem 5. If ρ < 1, then the number of vacations that the servers take continuously
under the condition that the servers are in vacation follows the truncated geometric distri-
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bution as follows:

P(NV = j+1) =

λ
λ +θ

(
θ

λ +θ

) j

1−
(

θ
λ +θ

)J , j = 0,1, ...,J−1. (29)

4 Conditional Stochastic Decomposition
In an M/M/c queueing system with server vacations, the conditional stochastic de-

composition property for the steady state queue length and the steady state waiting time
has been established (see [12]). This property is under the condition that all servers are
busy. We prove below that this property also holds for the system studied in this paper.

Let Qc = {N−2|N ≥ 2,L = J} and Wc = {W |N ≥ 2,L = J} represent the conditional
queue length and the conditional waiting time, respectively, given that both servers are
busy. The next two theorems establish the conditional stochastic decomposition property
on steady state queue length and waiting time. The proofs of these two theorems are
omitted.

Theorem 6. If ρ < 1, the conditional queue length Qc can be decomposed into the sum
of two independent random variables Q0 and Qd as follows:

Qc = Q0 +Qd (30)

where Q0 is the conditional queue length in a non-vacation M/M/2 system with two het-
erogeneous servers, and Qd is the additional queue length due to the vacations taken by
servers. Q0 has a geometric distribution with parameter ρ , and Qd has a probability gen-
erating function as follows:

Qd(z) =
1
σ

{
x2J +

λρz
θ +λ (1− z)

[
1−
(

θ
λ +θ

)J
]

x00

}
(31)

where

σ = x2J +ρ
λ
θ

[
1−
(

θ
λ +θ

)J
]

x00, (32)

x00 is given by Eq. (12), and x2J is given by Eq. (18).

Theorem 7. If ρ < 1, then the conditional waiting time Wc can be decomposed into the
sum of two independent random variables W0 and Wd as follows:

Wc =W0 +Wd (33)

where W0 is the conditional waiting time in a non-vacation M/M/2 system with two het-
erogeneous servers, and Wd is the additional delay due to the server vacations. W0 follows
an exponential distribution with parameter (1−ρ)× (µ1 +µ2), and Wd has the Laplace-
Stieltjes transform as follows:

Wd(s) =
1
σ

{
x2J +

(µ1 +µ2)λρ
s(λ +θ)+(µ1 +µ2)θ

[
1−
(

θ
λ +θ

)J
]

x00

}
(34)

where σ is defined in Eq. (32), x00 is given by Eq. (12), and x2J is given by Eq. (18).
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5 Conclusions
We have investigated an M/M/2 queueing system with two heterogeneous servers un-

der a variant vacation policy. We have provided the explicit expressions of the stationary
distribution of the system size and the mean system size. We have also showed that the
number of vacations that the servers take continuously under the condition that the servers
are in vacation follows a truncated geometric distribution. The conditional stochastic de-
composition properties of the queue length and the waiting time have been established for
such a system.
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