The Ninth International Symposium on Operations Research and Its Applications (ISORA'10) Chengdu-Jiuzhaigou, China, August 19–23, 2010 Copyright © 2010 ORSC & APORC, pp. 470–482

Proposition of New Network DEA Models Based on the Unified DEA Model

Tohru Ueda Hirofumi Amatatsu

Graduate School of Science and Technology, Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi 180-8633 Japan ueda@st.seikei.ac.jp

Abstract: In order to overcome the shortcomings of traditional DEA models respect to ratio measures, reference sets, and definitions of distance, we previously proposed a unified DEA model that included super-efficiency measures. In the present paper, we applied the proposed model to evaluating efficiencies of prefectures and discuss the usefulness of the unified DEA model. We have defined prefectures as matrix-type organizations and analyzed the prefecture efficiencies, using new network DEA models that maximize slacks subject to constraints including link constraints between sectors. Maximization of slacks is contrary to the philosophy of the unified DEA model. Link constraints may be too severe. Based on the philosophy of the unified DEA model, we discuss the possibility of new network DEA models.

Keywords: network DEA, reference set, efficient frontier, unified DEA

1 Introduction

Minimization of the objective function in the SBM (Slacks-Based Measure) model [1] results in the maximization of the slacks sum. This maximization corresponds to finding a point in the production possibility set that is the farthest point from each Decision Making Unit (DMU) to be evaluated, that is, the most difficult point to reach.

The SBM model maximizes distances, but the SuperSBM model minimizes distances. This super-SBM model has a shortcoming, discontinuities in the resulting efficiency scores.

To overcome these shortcomings, we proposed the unified DEA model [2],[3].

In the present paper we first apply the unified DEA model to evaluate efficiencies of prefectures and analyze its usefulness. We defined prefectures as matrix-type organizations and analyzed their efficiencies, using new network DEA models that maximize slacks subject to constraints including link constraints between sectors. However maximization of slacks is contrary to the philosophy of the unified DEA model. Link constraints may be too severe. Based on the philosophy of the unified DEA model, we propose a new network DEA model which relaxes link constraints.

2 Unified DEA Model

We proposed the unified DEA model including super-efficiency measure, based on the following principle:

[Principle] After deriving the nearest point, *Z*, to the target DMU *o* among points on the efficient frontier in $P \setminus (\mathbf{x}_o, \mathbf{y}_o)$, the production possibility set spanned by (X,Y) excluding $(\mathbf{x}_o, \mathbf{y}_o)$, obtain the efficiency score, using slacks between DMU *o* and the point *Z*, where

 $P \setminus (\mathbf{x}_o, \mathbf{y}_o)$

 $= \left\{ (\overline{\mathbf{x}}, \overline{\mathbf{y}}) \mid \overline{\mathbf{x}} \ge \sum_{j=1, \neq o}^{N} \lambda_j x_j, \, \overline{\mathbf{y}} \le \sum_{j=1, \neq o}^{N} \lambda_j y_j, \, \overline{\mathbf{y}} \ge \mathbf{0}, \, \lambda \ge \mathbf{0} \right\}, \text{ where } (\mathbf{x}_j, \mathbf{y}_j) \text{ is inputs}$

and outputs of DMU *j*.

Concrete procedures are as follows:

<Phase 1> Derivation of efficient facets

(i) After deleting DMU *o*, derive a set of n_0 efficient DMUs, *EF*, in the additive model. Let K = 0, $C = n_0 - 1$, and $E_0 = \phi$.

(ii) Make the combinations of *C* efficient DMUs: EC_1 , EC_2 , ..., EC_D , where *D* is the number of ways that *C* DMUs can be chosen from n_0 efficient DMUs. Let j = 1. (iii) If $EC_j \not\subset E_h$ ($h \leq K$) and a point corresponding to the centroid of EC_j is efficient in the additive model, let the EC_j be an efficient facet, E_{K+1} . Replace *K* with *K*+1 and *j* with *j*+1. If $j \leq D$, then repeat (iii). Otherwise replace *C* with *C*-1 and go to (iv).

(iv) If C = 1, then all of the efficient facets, $E_k (k = 1,...,K)$, are obtained. Otherwise return to (ii).

<Phase 2> Decision of the nearest point on effient facets to DMU o

(i) Determine the nearest point, Z_k , to DMU *o* on the efficient facet, E_k (k = 1,...,K), where

$$D_{op(k)} = \frac{1}{2} \left\{ \frac{1}{M} \left(\sum_{i=1}^{M} \frac{|x_{io} - x_{ip(k)}|}{x_{io}} \right) + \frac{1}{R} \left(\sum_{j=1}^{R} \frac{|y_{jo} - y_{jp(k)}|}{y_{jo}} \right) \right\}$$
$$x_{ip(k)} = \sum_{h \in E_k} \lambda_h x_{ih}, \ y_{jp(k)} = \sum_{h \in E_k} \lambda_h y_{jh},$$
$$D_{oZ_k} = \min_{\lambda_h: h \in E_k} D_{op(k)}.$$

(ii) Decide the nearest point, Z, to DMU *o* on the efficient frontier, that is, $D_{oZ} = \min_{k} D_{oZ_k}$.

<Phase 3> Calculation of efficiency scores, η_1 , η_2 and η_3 , where

$$\eta_1 = (1 - \omega_x) / (1 + \omega_y)$$

$$\eta_2 = 1 - (\omega_x + \omega_y) / 2$$

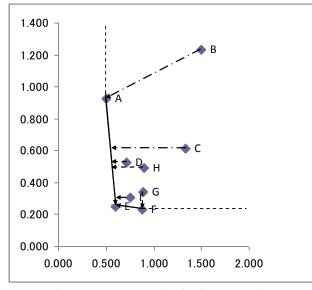


Fig. 1 An example of reference points

Table 1 SBW efficiency scores, 2									
DMU	SBMscore	DMU	SBMscore	DMU	SBMscore				
1	1.000	21	0.958	41	0.992				
2	0.924	22	1.000	42	0.989				
3	0.945	23	0.991	43	0.962				
4	0.998	24	1.000	44	0.970				
5	0.978	25	0.975	45	0.927				
6	0.941	26	0.990	46	0.960				
7	0.984	27	1.000	47	1.000				
8	0.986	28	0.985	48	0.963				
9	1.000	29	1.000	49	1.000				
10	1.000	30	1.000	50	1.000				
11	1.000	31	1.000	51	1.000				
12	1.000	32	0.958	52	1.000				
13	1.000	33	0.987	53	0.971				
14	1.000	34	0.965	54	1.000				
15	0.946	35	0.995						
16	0.959	36	0.986						
17	0.947	37	0.991						
18	1.000	38	0.983						
19	1.000	39	1.000						
20	0.967	40	0.974						

Table 1SBM efficiency scores, 2

$$\begin{split} \eta_3 &= \sqrt{(1 - \omega_x)(1 - \omega_y)} \\ \omega_x &= (\sum_{i=1}^M \frac{x_{io} - x_{iZ}}{x_{io}}) / M , \ \omega_y = (\sum_{j=1}^R \frac{y_{jZ} - y_{jo}}{y_{jo}}) / R . \end{split}$$

If $(\omega_x + \omega_y)$ is positive, the efficiency score η_2 is less than 1. If it is negative, the efficiency score η_2 is larger than 1. Note that if DMU *o* is efficient in the additive model, either $(x_{io} - x_{iZ})$ is negative for some *i* or $(y_{jZ} - y_{jo})$ is negative for some *j*.

Figure 1 shows an example of reference points. If efficiency scores are derived by above procedures, the efficiency of DMU A is measured by the distance between DMU A and DMU E and efficiency of DMU B is measured by the distance between DMU A and DMU B. Therefore the efficiency score of DMU A may be smaller than DMU B. In this case the efficiency of DMU B must be measured by distances from DMU E. Therefore the following phase should be added to [3].

<Phase 4> Reconstruction of efficient facets based on DMUs which have $\eta_i \ge 1$ and derive the final efficiency scores based on distances from these facets.

3 Evaluation of Prefectures in Japan

We use input-output tables for the prefectures of Japan. We evaluate prefectures in terms of "import", and "wages and salaries" as **inputs**, "private and government consumption", and "export" as **outputs**, "sectoral outputs" as **the internal outputs**, and "sectoral inputs" as **the internal inputs**.

In SBM, efficiency scores are calculated based on η_1 , but, due to the shortcomings of ratio measure the efficiency scores shown in Table 1 were based on η_2 .

Of the DMUs, 22 DMUs were efficient and 40 efficient facets were derived.

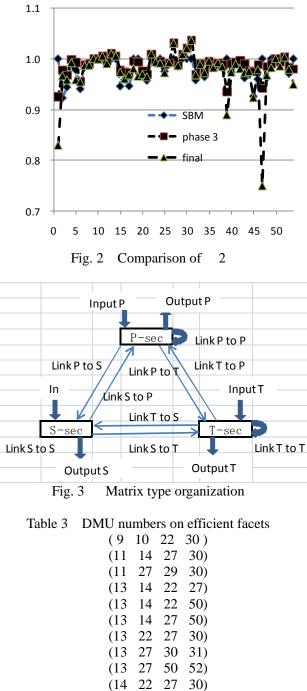
In (i) of phase 1, more than 22 DMUs were potentially efficient. Actually for DMU 31 there were 25 efficient DMUs.

In phase 3, twelve DMUs had efficiency scores greater or equal to than 1 and 11 efficient facets were derived. Table 2 shows efficiency scores η_1 and Table 3 shows DMU numbers on efficient facets in phase 3.

Final efficiency scores from phase 4 are shown in Table 4. Since the number of efficient DMUs is in phase 4 less than in phase1, the efficiency scores in phase 4 were less than those shown in Table 2. A comparison of SBM, phase 3 and the final efficiency scores is shown in Fig.2. The final efficiency scores of DMU 1 (Hokkaidou) and DMU 47 (Okinawa) were considerably smaller than those based on SBM. This difference is due to negative slacks, which give efficiency scores of 1 in SBM.

4 Minimum Distance Model in Network DEA

Network DEA programs deal with DMUs with internal sectors. Network DEA program take into consideration inputs and outputs between internal sectors, and


measure the overall efficiency of the organizations, and measure the efficiency of each sectors [4]-[6]

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.997 0.990 0.976 0.974 0.989 0.941
2 0.959 0.979 0.978 22 1.021 1.010 1.010 42 0.994 0.99 3 0.939 0.968 0.967 23 0.988 0.994 0.994 43 0.980 0.999 4 0.999 0.999 0.999 24 0.992 0.996 0.996 44 0.953 0.97 5 0.986 0.993 0.993 25 0.978 0.989 0.989 45 0.952 0.97 6 0.919 0.956 0.956 26 0.985 0.993 0.993 46 0.978 0.98 7 0.977 0.989 0.989 27 1.063 1.031 1.031 47 0.894 0.94	0.997 0.990 0.976 0.974 0.989 0.941
3 0.939 0.968 0.967 23 0.988 0.994 0.994 43 0.980 0.999 4 0.999 0.999 0.999 24 0.992 0.996 0.996 44 0.953 0.97 5 0.986 0.993 0.993 25 0.978 0.989 0.989 45 0.952 0.97 6 0.919 0.956 0.956 26 0.985 0.993 0.993 46 0.978 0.98 7 0.977 0.989 0.989 27 1.063 1.031 47 0.894 0.94	0.990 0.976 0.974 0.989 0.941
4 0.999 0.999 0.999 24 0.992 0.996 0.996 44 0.953 0.97 5 0.986 0.993 0.993 25 0.978 0.989 0.989 45 0.952 0.97 6 0.919 0.956 0.956 26 0.985 0.993 0.993 46 0.978 0.98 7 0.977 0.989 0.989 27 1.063 1.031 47 0.894 0.94	0.976 0.974 0.989 0.941
5 0.986 0.993 0.993 25 0.978 0.989 0.989 45 0.952 0.97 6 0.919 0.956 0.956 26 0.985 0.993 0.993 46 0.978 0.98 7 0.977 0.989 0.989 27 1.063 1.031 1.031 47 0.894 0.94	0.974 0.989 0.941
6 0.919 0.956 0.956 26 0.985 0.993 0.993 46 0.978 0.98 7 0.977 0.989 0.989 27 1.063 1.031 1.031 47 0.894 0.94	0.989 0.941
7 0.977 0.989 0.989 27 1.063 1.031 1.031 47 0.894 0.94	0.941
8 0.982 0.991 0.991 28 0.974 0.987 0.987 48 0.971 0.98	
	0.985
9 1.002 1.001 1.001 29 1.018 1.009 1.009 49 0.981 0.99	0.991
10 1.000 1.000 1.000 30 1.042 1.021 1.021 50 1.005 1.00	0.880
11 1.011 1.006 1.005 31 1.067 1.037 1.027 51 0.987 0.99	0.994
12 0.991 0.995 0.995 32 0.942 0.969 0.969 52 1.007 1.00	1.004
13 1.023 1.010 1.006 33 0.980 0.990 0.990 53 0.967 0.98	0.983
14 1.012 1.006 1.006 34 0.947 0.973 0.973 54 0.962 0.98	0.981
15 0.957 0.977 0.977 35 0.992 0.996 0.996	
16 0.952 0.975 0.974 36 0.973 0.987 0.986	
17 0.948 0.973 0.972 37 0.985 0.993 0.993	
18 0.992 0.996 0.996 38 0.976 0.988 0.988	
19 0.988 0.994 0.994 39 0.886 0.935 0.931	
20 0.951 0.976 0.975 40 0.981 0.991 0.990	

Table 2 Efficiency scores in phase 3

Table 4 Final efficiency scores

Tuble 1 Thiar efficiency sected											
DMU	η_{1}	η_2	η_3	DMU	η_1	η_2	η_3	DMU	η_1	η_2	η_3
1	0.746	0.830	0.813	21	0.935	0.965	0.965	41	0.981	0.990	0.990
2	0.933	0.967	0.966	22	1.021	1.010	1.010	42	0.963	0.981	0.980
3	0.918	0.959	0.958	23	0.988	0.994	0.994	43	0.944	0.973	0.970
4	0.985	0.993	0.992	24	0.985	0.992	0.992	44	0.953	0.976	0.976
5	0.924	0.959	0.958	25	0.950	0.973	0.972	45	0.869	0.924	0.921
6	0.917	0.955	0.954	26	0.985	0.993	0.993	46	0.956	0.979	0.977
7	0.974	0.987	0.987	27	1.063	1.031	1.031	47	0.665	0.750	0.709
8	0.977	0.988	0.988	28	0.974	0.987	0.987	48	0.938	0.968	0.968
9	1.002	1.001	1.001	29	1.018	1.009	1.009	49	0.965	0.983	0.982
10	1.000	1.000	1.000	30	1.042	1.021	1.021	50	1.005	1.001	0.880
11	1.011	1.006	1.005	31	1.067	1.037	1.027	51	0.972	0.986	0.986
12	0.981	0.991	0.991	32	0.937	0.969	0.968	52	1.007	1.004	1.004
13	1.023	1.010	1.006	33	0.978	0.989	0.989	53	0.961	0.980	0.980
14	1.012	1.006	1.006	34	0.947	0.973	0.973	54	0.909	0.950	0.949
15	0.948	0.974	0.974	35	0.992	0.996	0.996				
16	0.927	0.961	0.961	36	0.966	0.983	0.983				
17	0.939	0.969	0.969	37	0.985	0.993	0.993				
18	0.963	0.981	0.981	38	0.971	0.985	0.985				
19	0.939	0.966	0.964	39	0.817	0.890	0.885				
20	0.941	0.970	0.970	40	0.951	0.974	0.974				

 $(14 \ 22 \ 27 \ 50)$ $(14 \ 27 \ 50 \ 52)$

[The first facet includes DMU 9, 10, 22 and 30.]

Table 5	Table 5 Efficient scores of Divio 1 and 47										
DMU	SBM	phase 3	final								
1	1.000	0.926	0.830								
47	1.000	0.942	0.750								

Table 5Efficient scores of DMU 1 and 47

Conventional network DEA programs deal with organizations that have two special sectors: the starting sector and the ending sector. However, in organizations described in input-output tables, each sector produces goods for other sectors and at simultaneously receives goods from other sectors, as shown in Fig. 3. We refer to this type of organization as a matrix-type organization. In [7], we proposed algorithms for network DEA programs to measure the efficiency of matrix-type organizations.

However, [7] used maximum slacks in the same way as [6] did. In this section we discuss the minimum slacks.

In the free-link (FL) model of [7], the following formulation was proposed:

$$\rho = \min_{\lambda, s^-, s^+} \frac{\sum_{k=1}^{K} w_o^k (1 - \frac{1}{M^k} \sum_{m=1}^{M^k} s_m^{k^-} / x_{mo}^k)}{\sum_{k=1}^{K} w_o^k (1 + \frac{1}{R^k} \sum_{r=1}^{R^k} s_r^{k^+} / y_{ro}^k)}$$
(1)

subject to

$$\boldsymbol{x}_{o}^{k} = \boldsymbol{x}^{k} \boldsymbol{\lambda}^{k} + \boldsymbol{s}^{k-}, \quad \boldsymbol{y}_{o}^{k} = \boldsymbol{y}^{k} \boldsymbol{\lambda}^{k} - \boldsymbol{s}^{k+}, \quad (2)$$

$$\boldsymbol{z}^{(\kappa,n)}\boldsymbol{\lambda}^{\kappa} = \boldsymbol{z}^{(\kappa,n)}\boldsymbol{\lambda}^{n} \quad (\forall k \quad \forall h), \tag{3}$$

$$\lambda \ge 0, s^- \ge 0, s^+ \ge 0, \tag{4}$$

where $(\mathbf{x}_{j}^{k}, \mathbf{y}_{j}^{k})$ is the inputs and outputs for sector k of DMU j and $\mathbf{z}_{j}^{(k,h)}$ is the quantity of link from sector k to sector h. In Eq. (1), 25 DMUs are efficient. Let the set of efficient DMUs be *EF*. Among the cases, *C*, where "**min**" in FL [7] was changed into "**max**" and the summation was over *EF*, there were some infeasible cases. Since not every point expressed by a linear combination of efficient DMUs is necessarily on the efficient frontier, we could not assume that the solutions of cases *C* solved the model, but infeasible solutions of cases *C* could be ruled out

In our procedures, the efficient facets must be derived. The efficient frontier includes not only inputs and outputs, but also links that have not yet been discussed. One possibly better idea is to derive efficient facets for each sector and the minimum slacks between their facets and DMU*o*. The analysis of the appropriateness of this idea is shown below.

When using $(\mathbf{x}_{j}^{k}, \mathbf{y}_{j}^{k})$, efficient frontiers, $EF^{(k)}$, of sector k are constructed by following facets which are shown in numbers of efficient DMUs:

Sector 1: (6 39 46), (13 21 46), (21 39 43), (21 39 46)

Table 6 shows the efficiency scores obtained by ignoring the link constraints. If the existing link constraints, Eq. (3), are adopted, efficiency scores can not be obtained for 44 DMUs. Therefore, we propose a new network model as follows:

New Formulation >>>

i.

[Step 1] We derive D_f for the *a*-th facet f_{ia} of efficient frontier in sector

$$D_{f_{abc}} = \min_{\lambda, s^{-}, s^{+}} [SI' + SO' + SL'], \ f_{abc} = (f_{1a}, f_{2b}, f_{3c}),$$
(5)
$$SI' = \sum_{k=1}^{K} \{ \frac{w_{o}^{k}}{M^{k}} \sum_{m=1}^{M^{k}} (s_{1m}^{k-} + s_{2m}^{k-}) / x_{mo}^{k} \},$$

 Table 6
 Efficiency scores without link constraints

DMU	score	DMU	score	DMU	score
1	0.983	21	0.952	41	0.952
2	0.964	22	0.950	42	0.995
3	0.944	23	0.958	43	0.994
4	0.975	24	0.943	44	0.952
5	0.980	25	0.888	45	0.964
6	0.949	26	0.966	46	0.969
7	0.968	27	0.966	47	0.918
8	0.973	28	0.971	48	0.954
9	0.981	29	0.984	49	0.966
10	0.980	30	0.988	50	0.982
11	0.988	31	0.958	51	0.957
12	0.997	32	0.929	52	0.961
13	0.982	33	0.970	53	0.958
14	0.989	34	0.948	54	0.972
15	0.942	35	0.981		
16	0.934	36	0.966		
17	0.950	37	0.959		
18	0.844	38	0.972		
19	0.966	39	0.987		
20	0.959	40	0.986		

$$SO' = \sum_{k=1}^{K} \{ \frac{w_o^k}{R^k} \sum_{r=1}^{R^k} (s_{1r}^{k+} + s_{2r}^{k+}) / y_{ro}^k \},$$

$$SL' = \frac{1}{2K(K-1)} (SL_I + SL_O),$$

$$SL_{I} = \sum_{i \neq h} (s_{1}^{(i,h)-} + s_{2}^{(i,h)-}) / z_{o}^{(i,j)},$$

$$SL_{O} = \sum_{i \neq h} (s_{1}^{(i,h)+} + s_{2}^{(i,h)+}) / z_{o}^{(i,j)},$$

abject to

$$x^{k} = \sum_{i \neq h} x^{k} \lambda^{k} + s^{k-}_{i} - s^{k-}_{2} (m = 1 - M^{k} \cdot \forall k)$$

sub

$$x_{om}^{k} = \sum_{j \in EF^{(k)}} x_{jm}^{k} \lambda_{j}^{k} + s_{1m}^{k-} - s_{2m}^{k-} (m = 1, ..., M^{k}; \forall k),$$
(6)

$$y_{or}^{k} = \sum_{j \in EF^{(k)}} y_{jr}^{k} \lambda_{j}^{k} - (s_{1r}^{k+} - s_{2r}^{k+}) \quad (r = 1, ..., R^{k}; \forall k),$$
(7)

$$z_o^{(i,h)} = \sum_{j \in EF^{(i)}} z_j^{(i,h)} \lambda_j^{(i)} - (s_1^{(i,h)-} - s_2^{(i,h)-}),$$
(8)

$$z_{o}^{(i,h)} = \sum_{j \in EF^{(h)}} z_{j}^{(i,h)} \lambda_{j}^{(h)} + (s_{1}^{(i,h)+} - s_{2}^{(i,h)+}), \qquad (\forall i, \forall h)$$
(9)

$$\lambda_j \geq , \mathfrak{Z}_{1m}^{k\pm} \geq , \mathfrak{Z}_{2r}^{k\pm} \geq \quad (\forall k, m, r),$$

$$\tag{10}$$

$$s_1^{(i,h)\pm} \ge 0, s_2^{(i,h)\pm} \ge 0 \, (\forall i,h).$$
 (11)

[Step 2] We obtain the point L^i which minimizes $D_{f_{abc}}$ in sector *i*. (11)

[Step 3] We calculate efficiency scores, ρ_2 and $\rho_{3.}$

$$\rho_2 = 1 - (SI + SO + SL) / 3,$$

$$\rho_3 = \{(1 - SI)(1 - SO)(1 - SL)\}^{1/3},$$

$$(1 - SI)(1 - SO)(1 - SL) < 0 \Longrightarrow \rho_3 = 0,$$

where

$$SI = \sum_{k=1}^{K} \left\{ \frac{w_o^k}{M^k} \sum_{m=1}^{M^k} (s_{1m}^{k-} - s_{2m}^{k-}) / x_{mo}^k \right\},$$

$$SO = \sum_{k=1}^{K} \left\{ \frac{w_o^k}{R^k} \sum_{r=1}^{R^k} (s_{1r}^{k+} - s_{2r}^{k+}) / y_{ro}^k \right\},$$

$$SL = \frac{1}{2K(K-1)} \sum_{i \neq h} (s_1^{(i,h)-} - s_2^{(i,h)-} + s_1^{(i,h)+} - s_2^{(i,h)+}) / z_o^{(i,j)},$$

$$\mathbf{x}_o^k - \mathbf{x}_{L^k}^k = \mathbf{s}_1^{k-} - \mathbf{s}_2^{k-}, \quad y_{L^k}^k - \mathbf{y}_o^k = \mathbf{s}_1^{k+} - \mathbf{s}_2^{k+},$$

$$\mathbf{z}_{L^i}^{(i,h)} - \mathbf{z}_o^{(i,h)} = \mathbf{s}_1^{(i,h)-} - \mathbf{s}_2^{(i,h)-}, \quad \mathbf{z}_o^{i,h} - \mathbf{z}_{L^h}^{(i,h)} = \mathbf{s}_1^{(i,h)+} - \mathbf{s}_2^{(i,h)+}$$

The addition of SL and the modification of Eq. (3) to Eqs. (9) and (10) are new to this formulation. Efficiency scores in this model are shown in Table 7 and Fi.g.4. In DMU 14 (Kanagawa), ρ_2 and ρ_3 are not appropriate as efficiency scores because SL is large (SI = 0.103, SO = -0.211 and SL = 0.618: see Table 8). A, the sum of the λ s, was introduced to reduce the effect of SL being large and the following efficiency scores are proposed:

$$\begin{split} \rho_4 = & 1 - (SI + SO + SL / \Lambda) / 3, \\ \rho_5 = & \{ (1 - SI)(1 - SO)(1 - SL / \Lambda) \}^{1/3}, \\ \rho_6 = & 1 - (SI + SO) / 2. \end{split}$$

Table 9 and Fig.5 shows efficiency scores ρ_4 , ρ_5 and ρ_6 . Efficiency scores of DMU 14 are larger than 1, where Λ =12.1595, *SI*= 0.103063, *SO*= -0.210753, and *SL* = 0.617901 so that *SL* / Λ <| *SO*|.

In DMU 37 (Kagawa), ρ_4 and ρ_5 were larger than 1, but ρ_6 was less than 1. This is because *SL* was large and negative. Similar results were obtained for DMU 5 (Akita), 12 (Chiba), 30 (Wakayama), 36 (Tokushima) and 43 (Kumamoto).

 ρ_4 was nearly equal to ρ_5 , but ρ_6 was different from these because ρ_6 does not take into account *SL*. Which score is the best for evaluation of efficiency is under study.

DMU	ρ2	Ρ3	DMU	ρ2	Ρ3	DMU	P2	P3
1	1.028	1.026	21	1.006	1.005	41	1.028	1.022
2	1.009	1.007	22	0.998	0.998	42	0.998	0.998
3	1.025	1.019	23	0.974	0.973	43	1.006	1.006
4	1.033	1.030	24	1.010	1.007	44	1.025	1.020
5	1.039	1.036	25	0.940	0.940	45	0.997	0.995
6	1.035	1.027	26	0.925	0.919	46	1.024	1.020
7	1.018	1.016	27	0.937	0.913	47	0.936	0.934
8	1.032	1.028	28	0.990	0.989	48	1.030	1.025
9	1.011	1.009	29	0.995	0.995	49	1.026	1.022
10	1.011	1.011	30	1.032	1.030	50	0.958	0.957
11	0.952	0.947	31	1.004	1.002	51	0.999	0.998
12	1.020	1.019	32	1.014	1.007	52	0.963	0.961
13	0.982	0.967	33	1.018	1.017	53	1.018	1.014
14	0.830	0.746	34	0.999	0.995	54	1.007	1.006
15	1.012	1.007	35	1.026	1.024			
16	0.982	0.980	36	1.028	1.025			
17	0.994	0.993	37	1.084	1.070			
18	0.947	0.945	38	1.026	1.023			
19	0.993	0.993	39	1.003	1.002			
20	1.021	1.018	40	1.019	1.016			

 Table 7
 Efficiency scores 2 and 3 in the new network model

 Data
 Data

 Data
 Data

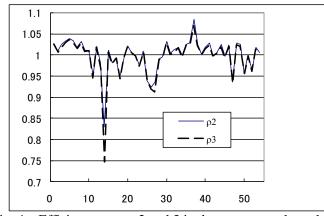


Fig. 4 Efficiency scores 2 and 3 in the new network model

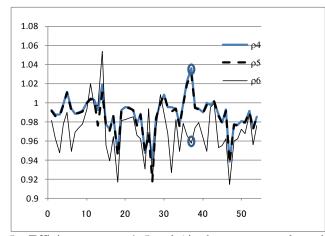


Fig. 5 Efficiency scores 4, 5 and 6 in the new network model

5 Conclusion

We applied the unified DEA model to evaluating efficiencies of prefectures and compared the efficiency scores with those obtained using SBM. Efficiency scores of two DMUs, 1 and 47, became considerably smaller than those obtained using SBM. We defined prefectures as matrix-type organizations and could evaluate their efficiencies, using a new network DEA model which minimizes slacks and relaxes link constraints between sectors.

Appendix Alternative Formulation of Sec. 4

The following formulation is equivalent with Step 1 and 2 of section 4.

$$\begin{split} D_{f} &= \min_{\lambda,s^{-},s^{+}} [SI + SO + SL] \quad f = f_{1} f_{2} f_{3} \\ SI' &= \sum_{k=1}^{K} \{\frac{w_{o}^{k}}{M^{k}} \sum_{m=1}^{M^{k}} (s_{1m}^{k-} + s_{2m}^{k-}) / x_{mo}^{k} \}, \\ SO' &= \sum_{k=1}^{K} \{\frac{w_{o}^{k}}{R^{k}} \sum_{r=1}^{R^{k}} (s_{1r}^{k-} - s_{2r}^{k-}) / y_{ro}^{k} \}, \\ SL' &= \frac{1}{2K(K-1)} \sum_{i \neq h} (s_{1}^{(i,h)-} + s_{2}^{(i,h)-} + s_{1}^{(i,h)+} + s_{2}^{(i,h)+}) / z_{o}^{(i,j)}, \\ \mathbf{x}_{o}^{k} &= \sum_{j \in EF^{(k)}} \mathbf{x}_{j}^{k} \lambda_{j}^{(k)} + \mathbf{s}_{1}^{k-} - \mathbf{s}_{2}^{k-}, \\ \mathbf{y}_{o}^{k} &= \sum_{j \in EF^{(k)}} \mathbf{y}_{j}^{k} \lambda_{j}^{(k)} - (\mathbf{s}_{1}^{k+} - \mathbf{s}_{2}^{k+}) \quad (k = 1, 2, ...K), \\ \mathbf{z}_{o}^{(i,h)} &= \sum_{j \in EF^{(i)}} \mathbf{z}_{j}^{(i,h)} \lambda_{j}^{(i)} + \mathbf{s}_{1}^{(i,h)-} - \mathbf{s}_{2}^{(i,h)-}, \\ \mathbf{z}_{o}^{(i,h)} &= \sum_{j \in EF^{(h)}} \mathbf{z}_{j}^{(i,h)} \lambda_{j}^{(h)} - (\mathbf{s}_{1}^{(i,h)+} - \mathbf{s}_{2}^{(i,h)+}), \\ \mathbf{s}_{1}^{(i,h)\pm} &\geq 0, \mathbf{s}_{2}^{(i,h)\pm} \geq 0 \quad (\forall i \neq h), \\ \lambda \geq \mathbf{0}, \mathbf{s}^{-} \geq \mathbf{0}, \mathbf{s}^{+} \geq \mathbf{0}, \\ -\sum_{i=1}^{m} v_{i}^{(k)} x_{ij}^{k} + \sum_{h=1}^{s} u_{h}^{(k)} y_{hj}^{k} + d_{j}^{(k)} = 0 \\ (j \in EF^{(k)}; k = 1, 2, ..., K), \\ M(1-b_{i}^{(k)}) \geq \lambda_{j}^{(k)} \geq 0, \quad M \cdot b_{j}^{(k)} \geq d_{j}^{(k)} \geq 0 \ (j \in EF^{(k)}), \\ v_{i}^{(k)} \geq 1 / x_{io}^{k} (i = 1, ..., m), u_{h}^{(k)} \geq 1 / y_{io}^{k} \\ (h = 1, ..., s); \quad (k = 1, ..., K), \\ b_{j}^{(k)} \in \{0,1\} \quad (j \in EF^{(k)}; k = 1, ..., K). \end{split}$$

However, this is not a simple linear program because of binary $b_j^{(k)}$ s. Therefore, we cannot necessarily obtain the same solutions with Sec. 4 for all DMUs.

Acknowledges

We would like to thank Dr. Hitomi of Central Research Institute of Electric Power Industry Japan, who provided the input-output tables.

References

- [1] Tone T. A slacks-based measure of efficiency in data envelopment analysis, *European Journal of Operational Research*, 2001, 130(3): 498-509.
- [2] Ueda T. and Amatatsu H. Evaluation of chemical companies using the ADD-MIN model, *Proceedings of DEA Symposium 2008*, 2008: 96-101.
- [3] Ueda T. and Amatatsu H. Proposition of the unified DEA model including

super-efficiency measure, Proceedings of DEA Symposium 2009, 2009: 86-90.

- [4] Bogetoft P., Fä re R. and Grosskopf S. Thoughts about Network DEA, *Proceedings of DEA Symposium 2008*, 2008: 1-4.
- [5] Tone K. and Tsutsui M. Several Properties of the slacks-based network DEA models, *Proceedings of DEA Symposium 2008*, 2008: 64-69.
- [6] Tone K. and Tsutsui M. Network DEA: A slacks-based measure approach. *European Journal of Operations Research*, 2009, 197(1): 243-252.
- [7] Amatatsu H. and Ueda T. Input-Output Tables and Network DEA: Efficiencies of the 47 Prefectures of Japan. *Proceedings of DEA Symposium 2009*, 2009: 91-97.

Table 8 Sums of slacks, SI, SO and SL, in the new network model

DMU	SI	SO	SL	DMU	SI	SO	SL	DMU	SI	SO	SL
1	0.0146	0.0227	-0.1200	21	0.0648	-0.0312	-0.0521	41	0.0608	0.0419	-0.1879
2	0.0823	-0.0080	-0.1027	22	0.0170	0.0125	-0.0241	42	0.0181	-0.0080	-0.0041
3	0.0838	0.0220	-0.1813	23	0.0931	-0.0251	0.0086	43	0.0101	-0.0085	-0.0193
4	0.0411	0.0034	-0.1449	24	0.0806	-0.0052	-0.1064	44	0.0838	0.0110	-0.1703
5	0.0114	0.0097	-0.1366	25	0.0909	0.0483	0.0412	45	0.0126	0.0772	-0.0815
6	0.0080	0.0939	-0.2062	26	0.0494	-0.0360	0.2125	46	0.0279	0.0480	-0.1482
7	0.0301	0.0326	-0.1166	27	0.3318	-0.1699	0.0274	47	0.0259	0.1451	0.0219
8	0.0165	0.0367	-0.1482	28	0.0446	0.0090	-0.0226	48	0.0778	0.0021	-0.1688
9	-0.0006	0.0466	-0.0780	29	0.0248	-0.0408	0.0302	49	0.0233	0.0532	-0.1532
10	0.0198	-0.0053	-0.0486	30	0.0144	0.0090	-0.1181	50	0.0679	-0.0123	0.0717
11	0.0151	-0.0542	0.1832	31	0.0617	0.0030	-0.0764	51	0.0658	-0.0010	-0.0621
12	0.0086	-0.0022	-0.0653	32	0.0650	0.0815	-0.1882	52	0.0780	-0.0551	0.0870
13	0.2184	-0.2119	0.0463	33	0.0383	-0.0016	-0.0921	53	0.0632	0.0250	-0.1416
14	0.1031	-0.2108	0.6179	34	0.1125	-0.0109	-0.0972	54	0.0155	0.0323	-0.0675
15	0.1213	-0.0317	-0.1255	35	0.0085	0.0358	-0.1222				
16	0.0875	0.0339	-0.0666	36	0.0558	0.0121	-0.1528				
17	0.0404	0.0311	-0.0530	37	0.0611	0.0236	-0.3364				
18	0.1502	0.0163	-0.0079	38	0.0422	0.0108	-0.1298				
19	0.0272	0.0098	-0.0169	39	0.0154	0.0263	-0.0505				
20	-0.0351	0.0717	-0.0995	40	0.0439	0.0301	-0.1298	1			

Table 9Efficiency scores4,5 and6 in the new network model

DMU	ρ_4	ρ ₅	ρ_6	DMU	ρ_4	ρ ₅	ρ_6	DMU	ρ_4	ρ ₅	ρ_6
1	0.992	0.992	0.981	21	0.995	0.994	0.983	41	1.000	0.997	0.949
2	0.987	0.986	0.963	22	0.992	0.992	0.985	42	0.997	0.997	0.995
3	0.987	0.985	0.947	23	0.977	0.976	0.966	43	1.001	1.001	0.999
4	0.998	0.997	0.978	24	0.988	0.987	0.962	44	0.987	0.986	0.953
5	1.011	1.011	0.989	25	0.948	0.947	0.930	45	0.979	0.978	0.955
6	0.994	0.991	0.949	26	0.968	0.967	0.993	46	0.993	0.992	0.962
7	0.988	0.988	0.969	27	0.942	0.917	0.919	47	0.938	0.936	0.914
8	0.989	0.989	0.973	28	0.984	0.983	0.973	48	0.977	0.976	0.960
9	0.991	0.991	0.977	29	0.999	0.999	1.008	49	0.976	0.976	0.962
10	1.000	0.999	0.993	30	1.008	1.008	0.988	50	0.980	0.980	0.972
11	1.004	1.004	1.020	31	0.995	0.994	0.968	51	0.979	0.979	0.968
12	1.003	1.003	0.997	32	0.995	0.990	0.927	52	0.991	0.990	0.989
13	0.992	0.976	0.997	33	0.994	0.993	0.982	53	0.972	0.972	0.956
14	1.019	1.010	1.054	34	0.977	0.975	0.949	54	0.985	0.985	0.976
15	0.978	0.975	0.955	35	0.999	0.998	0.978				
16	0.972	0.970	0.939	36	1.022	1.019	0.966				
17	0.986	0.986	0.964	37	1.036	1.030	0.958				
18	0.947	0.944	0.917	38	0.995	0.994	0.973				
19	0.992	0.992	0.981	39	0.993	0.993	0.979				
20	0.995	0.994	0.982	40	0.990	0.989	0.963				