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Abstract This paper focuses on the feature selection in multi-instance learning. A new version
of support vector machine named p-MISVM is proposed. In the p-MISVM model, the problem
needs to be solved is non-differentiable and non-convex. By using the constrained concave-convex
procedure (CCCP), a linearization algorithm is presented that solves a succession of fast linear
programs that converges to a local optimal solution. Furthermore, the lower bounds for the absolute
value of nonzero components in every local optimal solution is established, which can eliminate
zero components in any numerical solution. The numerical experiments show that the p-MISVM is
effective in selecting relevant features, compared with the popular MICA.
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1 Introduction
Feature selection is very important in many applications of data mining. By restricting

the input space to a small subset of input variables, it has obvious benefits in terms of
data storage, computational requirements, and cost of future data collection. This paper
focuses on feature section in multi-instance learning via a new version of support vector
machine (SVM).

Multi-instance learning (MIL) is a growing field of research in data mining. In the
MIL problem, the training set is composed of many bags, each involves in many instances.
A bag is positively labeled if it contains at least one positive instance; otherwise it is
labeled as a negative bag. The task is to find some decision function from the training set
for correctly labeling unseen bag.

MIL problem was first introduced by Dietterich et al.[1] in drug activity prediction.
So far, MIL has been applied to many fields such as image retrieval ([2]), face detection
([3]), scene classification, text categorization, etc and is often found to be superior than
a conventional supervised learning approaches. ([4]) proposed a framework called Di-
verse Density algorithm. Since then various variants of standard single instance learning
algorithms like Boost-ing ([3], [5]), SVM ([2], [6] ), Logistic Regression ([7]), nearest
neighbor ([8]) etc. have been modified to adapt to the MIL problem.
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Based on the standard SVM, some methods including MI, mi [9], etc. have been
proposed for the MIL problem. There are few works on feature selection in MIL. In
[10], the MICA algorithm is introduced, which employs 1-norm, rather than 2-norm in
MI and mi. Because the 1-norm SVM formulation is known to lead to sparse solutions
([11], [12]), MICA can get few features when a linear classifier is used. Recently, an
effective method, named p-norm SVM (0 < p < 1), is proposed on feature selection in
the standard classification problems in [13], which motivates us to apply it to the MIL
problem. This paper proposes p-norm multi-instance SVM (p-MISVM), which replaces
the 2-norm penalty by the p-norm (0 < p < 1) penalty in the objective function of the
primal problem in the MI. The p-MISVM conducts feature selection and classification
simultaneously. However, there are two difficulties in solving p-MISVM model: (i). It is
impossible to solve the primal problem via its dual problem and the primal problem itself
is hard to be solved, because it is neither differentiable nor convex; (ii). Feature selection
needs to find the nonzero components of the solution to the primal problem. However,
usually algorithms can only provide an approximate solution where nonzero components
in the solution can not be identified theoretically.

Firstly, for the difficulty (i), by using the constrained concave-convex procedure (CCCP)
([14], [15]), a linearization algorithm is presented that solves a succession of fast linear
programs that converges to a local optimal solution to the primal problem. Furthermore,
for the difficulty (ii), the lower bounds for the absolute value of nonzero entries in every
local optimal solution is established, which can eliminate zero entries in any numerical
solution. Lastly, the performance of p-MISVM is illustrated on the simulated datasets.

Now we describe our notation. For a vector x in Rn, [x]i(i = 1,2, · · · ,n) denotes the
i-th component of x. |x| denotes a vector in Rn of absolute value of the components of x.

‖x‖p denotes that (|[x]1|p + · · ·+ |[x]n|p)
1
p . Strictly speaking, ‖x‖p is not a general norm

when 0 < p < 1, but we still follow this term p-norm, because the forms are same except
that the values of p are different. ‖x‖0 is the number of nonzero components of x.

This paper is organized as follows. In section 2, the p-MISVM for feature section is
introduced. In section 3, the CCCP is proposed to solve p-MISVM model. In section
4, the absolute lower bounds of the local optimal solution is established. In section 5,
numerical experiments are given to demonstrate the effectiveness of our method. We
conclude this paper in section 6.

2 p-norm multi-instance support vector machine
For feature selection, p-MISVM is an embedded method in which training data are

given to a learning machine, which returns a predictor and a subset of features on which
it performs predictions. In fact, feature selection is performed in the process of learning.

Consider the multi-instance classification problem with the training set T is given by

{(X1,y1), · · · ,(Xl ,yl)}, (1)

where Xi = {xi1, · · · ,xili},xi j ∈ Rn(i = 1, · · · , l, j = 1, · · · , li),yi ∈ {−1,1}. Here, when
yi = 1, Xi is called as a positive bag and (Xi,yi) implies that there exists at least one
instance with positive label in Xi; when yi =−1, Xi is called as a negative bag and there
exists no any instance with positive label in Xi. The task is to find a function g(x) such that
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the label of any instance in Rn can be deduced by the decision function f (x) = sgn(g(x)).
For convenience, the training set (1) is represented as

{(X1,y1), · · · ,(Xq,yq),(xr+1,yr+1), · · · ,(xr+s,yr+s)}, (2)

where y1 = · · ·= yq = 1,yr+1 = · · ·= yr+s =−1, (Xi,1) implies that there exists at least
one instance with positive label and (xi,−1) implies that the label of the instance xi is
negative. All of instances in positive bags X1, · · · ,Xq are x1, · · · ,xr. I(i) (i = 1, · · · ,q)
denotes the index set of instances in Xi. The feature vector

gi = ([x1]i, [x2]i, · · · , [xr+s]i)
T,(i = 1, · · · ,n) (3)

denotes the values of i-th feature in all instances.
Suppose the decision function is given by f (x) = sgn((w · x) + b), the p-MISVM

solves the optimization problem:

min
w,b,ξ

‖w‖p
p +C1

q

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi,

s.t. max
j∈I(i)

((w · x j)+b)≥ 1−ξi, i = 1, · · · ,q,
(w · xi)+b≤−1+ξi, i = r+1, · · · ,r+ s,
ξi ≥ 0, i = 1, · · · ,q,r+1, · · · ,r+ s,

(4)

where C1(C1 > 0), C2(C2 > 0) and p(0 < p < 1) are parameters. Now we describe our
new method such as following:

Algorithm 1. (p-MISVM)
(1) Given a training set (2); Select the parameters C1(C1 > 0),C2(C2 > 0) and p (0 <

p < 1);
(2) Solve the optimization problem (4) and get its global solution (w∗,b∗,ξ ∗);
(3) Select the feature set: {i|[w∗]i 6= 0,(i = 1, · · · ,n)};
(4) Construct the decision function f (x) = sgn(w∗ · x)+b∗).
Note that, in the Algorithm 1, there are two difficulties (i) and (ii) that have been

addressed in Section 1, so the following sections will consider them respectively.

3 CCCP for the p-MISVM model
The constrained concave-convex procedure (CCCP) ([14], [15]) is an optimization

tool for problems whose objective and constrained functions can be expressed as the dif-
ferences of convex functions. Consider the following optimization problem:

minx f0(x)−g0(x)
s.t. fi(x)−gi(x)≤ ci, i = 1, · · · ,m,

(5)

where fi,gi(i = 0, · · · ,m) are real-valued, convex and differentiable functions on Rn, and
ci ∈ R. Given an initial x(0), CCCP computes x(t+1) from x(t) by replacing gi(x) with its
first-order Taylor expansion at x(t), and then setting x(t+1) to the solution of the following
optimization problem:

minx f0(x)− [g0(x(t))+∇g0(x(t))>(x− x(t))]
s.t. fi(x)− [gi(x(t))+∇gi(x(t))>(x− x(t))]≤ ci, i = 1, · · · ,m.

(6)
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Here, ∇g(x̄) is the gradient of the function g at x̄. For non-smooth functions,the gradient
should be replaced by the subgradient. It can be shown that CCCP converges to a local
minimum solution of (5) in [15].

Consider the problem (4), we firstly introduce the variable v = ([v]1, · · · , [v]n)> to
eliminate the absolute value from the objective function, which leads to the following
equivalent problem:

min
w,b,ξ

‖v‖p
p +C1

q

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi, (7)

s.t. max
j∈I(i)

((w · x j)+b)≥ 1−ξi, i = 1, · · · ,q, (8)

(w · xi)+b≤−1+ξi, i = r+1, · · · ,r+ s, (9)
ξi ≥ 0, i = 1, · · · ,q,r+1, · · · ,r+ s, (10)

−v≤ w≤ v (11)

where ‖v‖p
p = [v]p1 + · · ·+[v]pn , due to the last constraint (11). Furthermore, we note that

the objective function and the constraint functions in the problem (7)-(11) can be regarded
as the differences of two convex functions. Hence, we can solve the problem (7)-(11) with
CCCP. Note that max j∈I(i)(w ·x j) in (8) is convex, but a non-smooth function of w.To use
the CCCP, we have to replace the gradient by the subgradients. It is easy to obtain that for
i = 1, · · · ,q, the subgradients ∂ max j∈I(i)(w · x j) = {∑ j∈I(i) β jx j|β j ∈ R,β j ≥ 0}, where

β j =

{
= 0, if(w · x j) 6= max

j∈I(i)
(w · x j),

≥ 0, otherwise
with ∑ j∈I(i) β j = 1. At the k-th iteration, denote

the current w,b,ξ ,v estimate and the corresponding β j by w(k),b(k),ξ (k),v(k) and β (k)
j ,

respectively. In the experiments, we initialized β (0)
j = 1

|I(i)| , for j ∈ I(i). For convenience,

we pick the subgradient with: β (k)
j =

{
1, if j = argmaxk∈I(i)(w · xk),

0, otherwise.
then the opti-

mization problem is:

min
w,b,ξ ,v

p(v(k))p−1v+C1

q

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi,

s.t. (w · x(k)i )+b≥ 1−ξi, i = 1, · · · ,q,
(w · xi)+b≤−1+ξi, i = r+1, · · · ,r+ s,
ξi ≥ 0, i = 1, · · · ,q,r+1, · · · ,r+ s,
−v≤ w≤ v.

(12)

which is a standard linear programming, then the following algorithm is established:
Algorithm 2.
(1) Given a training set (2); Select the parameters C1(C1 > 0), C2(C2 > 0) and p(0 <

p < 1);

(2) Let k = 0, select x(k)i = 1
|I(i)| ∑ j∈I(i) x j, i = 1, · · · ,q and v(k) = 0;

(3) Solve the following optimization problem (12), and get its solution (w(k+1),b(k+1),
ξ (k+1),v(k+1));
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(4) Compute g(x j) = (w(k+1) ·x j)+b(k+1), for j ∈ I(i) and i = 1, · · · ,q, select x(k+1)
i =

argmax j∈I(i)g(x j);

(5) If ‖x(k)i −x(k+1)
i ‖= 0, for i= 1, · · · ,q, then let w∗=w(k+1),b∗= b(k+1),ξ ∗= ξ (k+1)

and stop; otherwise, let k = k+1, go to step (3).

4 The lower bounds of nonzero entries of local optimal
solution to the problem (4)

Using the same strategy in [16], we get the following theorem 1, which can be used
to identify nonzero components in the local optimal solutions to the problem (4), even
though the Algorithm 2 can only find the approximate local optimal solution.

Theorem 1 For any local optimal solution (w∗,b∗,ξ ∗) to the problem (4), if |[w∗]i| ≤
( p√

C2
1 q+C2

2 s‖gi‖
)

1
1−p , then [w∗]i = 0, i = 1,2, · · · ,n, where gi is defined in (3).

Proof: Suppose ‖w∗‖0 = k. Without loss of generality, let w∗=([w∗]1, [w∗]2, · · · , [w∗]k,
0,0 · · ·0)T and z∗=([w∗]1, [w∗]2, · · · , [w∗]k)T . For the new instance x̃i =([xi]1, [xi]2, · · · , [xi]k)

>,
we consider the following optimization problem

min
zzz,b,ξξξ

‖z‖p
p +C1 ∑q

i=1 ξi +C2 ∑r+s
i=r+1 ξi ,

s.t. max
j∈I(i)

((z · x̃ j)+b)≥ 1−ξi, i = 1, · · · ,q,
(z · x̃i)+b≤−1+ξi, i = r+1, · · · ,r+ s,
ξi ≥ 0, i = 1, · · · ,q,r+1, · · · ,r+ s.

(13)

It has been pointed out by [10] that the constraint max j∈I(i)((z · x̃ j)+b)≥ 1−ξi, is equiva-
lent to the fact that there exist convex combination coefficients vi

j ≥ 0,∑ j∈I(i) vi
j = 1, such

that (w ·∑ j∈I(i) vi
j x̃ j)+b≥ 1−ξi. Then, the above problem (13) is equivalent to:

min
zzz,b,ξξξ

‖z‖p
p +C1 ∑q

i=1 ξi +C2 ∑r+s
i=r+1 ξi ,

s.t. (z ·∑ j∈I(i) vi
j x̃ j)+b≥ 1−ξi, i = 1, · · · ,q,

(z · x̃i)+b≤−1+ξi, i = r+1, · · · ,r+ s,
ξi ≥ 0, i = 1, · · · ,q,r+1, · · · ,r+ s,
vi

j ≥ 0, j ∈ I(i), i = 1, · · · ,q,
∑ j∈I(i) vi

j = 1, i = 1, · · · ,q.

(14)

The Lagrange function of (14) is:

L(z,b,ξ ,α,ζ ,λ ,µ) = ‖z‖p
p +C1

q

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi−
q

∑
i=1

αi((z · ∑
j∈I(i)

vi
j x̃ j)+b−1+ξi)+

r+s

∑
i=r+1

αi((z · x̃i)+b+1−ξi)−
q

∑
i=1

ζiξi−
r+s

∑
i=r+1

ζiξi−
q

∑
i=1

∑
j∈I(i)

λ i
jv

i
j−µ( ∑

j∈I(i)
vi

j−1).
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It is easy to know that (z∗,b∗,ξ ∗,v∗) is a local optimal solution of (14), according to the
KKT condition, we have

p|z∗|p−1sign(z∗) =
q

∑
i=1

αi ∑
j∈I(i)

vi
j x̃i−

r+s

∑
i=r+1

αix̃i, (15)

0≤ αi ≤C1, i = 1, · · · ,q, (16)
0≤ αi ≤C2, i = r+1, · · · ,r+ s. (17)

According to (15)-(17) and Cauchy-Schwarz inequality, we have

p|[z∗]i|p−1 = [|
q

∑
i=1

αi ∑
j∈I(i)

vi
j x̃i−

r+s

∑
i=r+1

αix̃i|]i (18)

≤ ‖(α1, · · · ,αq,−αr+1, · · · ,−αr+s)‖
‖([ ∑

i∈I(1)
v1

j x̃ j]i, · · · , [ ∑
i∈I(p)

vq
j x̃ j]i, [x̃r+1]i, · · · , [x̃r+s]i)‖ (19)

≤
√

C2
1q+C2

2s‖gi‖ (20)

which means |[z∗]i| ≥ ( p√
C2

1 q+C2
2 s‖gi‖

)
1

1−p , then the conclusion is obtained. �

According to Theorem 1, we can identify the nonzero components of the local optimal
solution to (4). Based on the Algorithm 2 and the Theorem 1, the new algorithm 3 is
established as follows:

Algorithm 3.
(1) Given a training set (2); Select the parameters C1(C1 > 0),C2(C2 > 0) and p (0 <

p < 1);
(3) Using the Algorithm 2 to get the local optimal solution (w∗,b∗,ξ ∗) to the problem

(4);

(4) Compute Li = ( p√
C2

1 q+C2
2 s‖gi‖

)
1

1−p , for i= 1, · · · ,n; Select the feature set: {i|[w∗]i >
Li,(i = 1, · · · ,n)};

(5) Construct the decision function f (x) = sgn((w̃∗ · x̃)+ b∗), where the components
of w̃∗ are nonzero components of w∗ and the components of x̃ are also corresponding to
nonzero components of w∗.

Note that, in the following section, our experiments are conducted according to the
algorithm 3.

5 Numerical experiments
In this section, some experiments on four simulated datasets are conducted, by com-

paring p-MISVM with MICA. The four simulation datasets (I, II, III, IV) are generated
by the following steps:
•According to two different distributions, independently generate n0 positive and neg-

ative feature vectors g+i ∈ Rl+ , g−i ∈ Rl− , i = 1,2, · · · ,n0 where l+ and l− are respectively
the number of the positive and negative points;
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Table 1: Four simulate datasets

Data features relevant features Distribution of g+ Distribution of g−

I 20 3 N(1,0.5) N(−1,0.5)
II 20 3 U(−0.5,1) U(−1,0)
III 100 5 N(1,0.5) N(−1,0.5)
IV 100 5 U(−0.5,1) U(−1,0)

Table 2: Results on the four Simulated datasets

Dataset Methods No. of sele- Percent of rele- Average Parameters
cted features vant features(%) accuracy(%)

I p-MISVM 2.96 88.1 99.88 p=0.5, C = 2.8
MICA 5.05 59.4 99.86 C=2

II p-MISVM 2.91 92.7 99.98 p = 0.5,C = 1
MICA 3.36 89 99.88 C=0.7

III p-MISVM 5.06 89 99.98 p = 0.6,C = 0.57
MICA 6.97 71 99.98 C=2

IV p-MISVM 3.51 83.7 99.36 p = 0.6,C = 0.7
MICA 3.83 75.9 99.46 C=0.7

• According to other distributions, independently generate some stochastic vectors
that are irrelevant to the class;
• The positive bags contains three points that are stochastic generated in the rectan-

gular region, the radius of this rectangular region is 2 and the center is the positive points
generated by the first step.
• The negative bags is just the negative points generated by the first step.
The description of the four data sets is listed in Table 1.
According to Algorithm 3, 100 experiments are conducted for every dataset. Note

that, there are three parameters C1, C2 and p in Algorithm 3. Usually we set C1 =C2 =C
in our experiments, and the best value of these parameters is chosen by ten-fold cross
validation. Our experimental results are illustrated in Table 2, where the best results are
given by the bold form. Obviously, p-MISVM performs the best among two methods. In
Table 2, the data in 4th column shows the percentage of the number of the right features
over the number of the selected features, which means the bigger the value the better
the result. The average accuracy is computed by averaging the test accuracy among 100
experiments. It is easy to see that p-MISVM selects the least features with the high
accuracy, compared with the MICA.

6 Conclusion
Feature selection is very important in many applications of data mining. This paper in-

troduces a new version of SVM named p-MISVM to feature selection and multi-instance
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classification. By using the CCCP method, a linearization algorithm is proposed to get
the approximate local optimal solution to p-MISVM. And the lower bounds for the ab-
solute value of nonzero components in every local optimal solution is established, which
can eliminate zero components in any numerical solution. The numerical experiments
show that the p-norm support vector machines is effective in selecting relevant features,
compared with the popular MICA.
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