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Abstract Considering the multiple instance learning(MIL) in classification problem, a novel mul-
tiple instance twin support vector machines(MI-TWSVM) method is proposed. For linear classifi-
cation, unlike other maximum margin SVM-based MIL methods, the proposed approach leads to
two non-parallel hyperplanes. The non-linear classification via kernels is also studied. Prelimi-
nary experimental results on public datasets indicate that our MIL method is competitive with the
previous MIL methods.
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1 Introduction

Multiple instance learning (MIL) was first introduced by Dietterich et al.[2] in the
context of drug activity prediction. The task is to predict whether a drug molecule can
bind to the targets (enzymes or cell-surface receptors). Each drug molecule (called a
bag) can have multiple low-energy shapes or conformations (instances). The molecule
is considered to be useful as a drug if one of its conformations can bind to the targets.
However, biochemical data can only tell the binding capability of a molecule, but not
a particular conformation. Thus, while each training pattern has a known label in the
standard supervised learning, only the bags (but not the individual instances) have known
labels in MIL. In other words, MIL only provides weak label information of the training
data.

Following the seminal work of Dietterich et al.[2], a number of MIL methods emerged.
Examples include the Diverse Density (DD)[5], EM-DD [12], MI-NN [8], mi-SVM [1],
MI-SVM [1], MICA [4] and SVM-CC [11]. Besides classification, progress has also been
made on MIL with real-valued outputs [8]. Moreover, many applications are now consid-
ered as MIL problems. Examples include content based image retrieval [8, 5], where each
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image is a bag and each local image patch an instance, and text categorization prediction
[10, 1].

In this paper, we focus on SVM-based MIL methods. In this field, e.g. in [4, 1, 11],
the usual approach is use the maximum “margin" principle and the “witness" instances
in positive bags are obtained by selecting the farthest from the boundary constructed by
SVMs. Inspired by twin support vector machine(TWSVM) [3], we propose a new MIL
method called multiple instance twin support vector machines(MI-TWSVM), which is an
extension of the TWSVM. For linear classification, our MI-TWSVM aims at generating a
positive hyperplane and a negative hyperplane, such that the former one is close to at least
one instance(“witness" instance) in every positive bag and is far from all instances be-
longing to negative bags, and the latter one is close to all instances belonging to negative
bags and is far from the “witness" instances in positive bags. In other word, the “wit-
ness" instance in a positive bag by selecting the farthest from the boundary constructed
by TWSVM. Moreover, instead of having QP problems, the MI-TWSVM optimization
problem are bilevel programming problems (BLPPs). We using a simple optimization
heuristic for solving these problems.

2 Primal Model

Multiple instance classification generalizes the standard classification by making sig-
nificantly weaker assumptions on the labeling information. In multiple instance classi-
fication, instances are grouped into bags and a label is attached to each bag instead of
to each instance. More formally, we consider the problem of classify / positive bags
and m negative bags in n-dimensional real space R". Suppose that the positive bags are
represented by By, --- ,B; with the label of +1 and the negative bags by Bji1, - ,Bjim
with the label of —1, where B; = {x;1,xp2, - ,Xi, } is the ith bag containing instances
Xij eERYj=1,...,ni=1,.. LI+1,....[+m.

2.1 Linear Model

Different from the idea of maximizing the “margin" between two disjoint half planes
of the positive bags and negative bags, we aim at generating two non-parallel hyper-
planes(a positive hyperplane and a negative hyperplane)

Ax)=wix+b =0 and fo(x)=wyx+by=0, (1

such that the positive hyperplane is close to the “positive" instances in positive bags and
is far from the all instances in negative bags, and the negative hyperplane is close to the
all negative instances and is far from the “positive" instances in positive bags.

Only one instance called “witness" in every positive bag matters. The positive witness
is usually the “most positive"” one in the positive bag. In order to introduce the degree of
an instance x belonging to the positive class, consider the distance between the instance x
and the boundary consisting of the separating hyperplanes

wlTx—l—bl szx—i—bzi w1Tx+b1 szx—&—bzi
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generated by positive and negative hyperplanes (1). Obviously the distance between an
instance x and the boundary is

D(x) = min {D; (x),D_(x)}, 3)

where D (x) and D_(x) are respectively the distances between the instance x and the
hyperplanes (2)

| Wy x+b1 w2 x+b2 | | w1Tx+b1 w2 x+b2 |
D.(x) = IIW1H HWzH _ " lwll w2l
|| ek + I 2w -wp)
w w 2
H IH H 2” + HWIHHWZH
‘ wlTx+b1 Wy x+b2 ‘ | wlTx+b1 W x+b2 |
D_(x) = [will [[wa]] [[wi]] [[wa]] 4)
- - W -
HHWIH HW2H|| 5 _ 20ww)
[willTw2ll
. [l x+bi| [l [wix+b1] [jwal|
Noticing that . < 1and > 1 imply that x is in the positive

[wy x+bs| [fwil [w x+bs] ]l
and negative region respectively. it is reasonable to define the degree of the instance x
belonging to the positive class as

hwixtbi| | [ws|
D()C) \w;x-ﬁ-bz\ Tl <k

d(x) —Jo |w) x+b| sz\} —1: (5)
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The bigger the value d(x) is, the more positive the x is. For positive bag B;,i = 1,...1,

we introduce a selector which finds the positive “witness" in B; by selecting the most

positive instance x; = argmax f(x). Once these “witness" instances are identified, the
xe

relative position of other instances in positive bags would become irrelevant. For negative
bags, they are unfolded into instances. Thus, the positive and negative hyperplanes are

obtained respectively by solving the following bilevel programming problem (BLPP):

] I+m n;
min Y (w T xi+61) +eami) + Y Y (o Jxik+ b)) i) (6)
wi,w2,b1,b2,1,6 x; i—1 i=l+1k=1
s.t. wlxl-k—i—bl2l—é,»k,é,-kzo,k:1,...,nl~,i:l—|—1,...m, 7
Waxi+by>1—mm >0,i=1,..1, (8)
xi=argmax {d(x;;)},i=1,..1, )
XijE€B; ’

where ¢; > 0 and ¢, > 0 are positive parameters, d(x) is defined by (5).

Once the wy, wy, by, by and the “witness" instances x; (i = 1,...,1) are found from the
(6)—(9), the bag label of a particular bag B is deduced by

|W1Tx+bll |[wal|

F(B)=sgn (1 —m (10)

xeB |w2x+b2| HW1||
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2.2 Nonlinear Model

The above approach can also be extended to construct nonlinear multi-surface classi-
fiers by considering the following kernel-generated surfaces instead of the hyperplanes

[ =ulKxT,CT)+bi =0 and fr(x)=u; K(x",CT)+b,=0, (1)

where CT is a matrix contains the “witness" instances in positive bags and all instances
in negative bags, and K(-,-) is an appropriately chosen kernel. Note that the hyperplanes
can be obtained as a special case of (11), by using a linear kernel K(x',C") = C"x, and
defining wi = Cu; and wy = Cuy.

In order to introduce the degree of an instance x belonging to the positive class, con-
sider the separating surfaces

u K(x,C") +b n uy K(x,C") + by
\/ulTK(C,CT)ulT \/uzTK(C,CT)uzT
u{ K(x,CT)+b B uy K(x,C") +by
\/ulTK(C,CT)ulT \/uzTK(C,CT)uzT

generated by positive and negative surfaces (11). Define the distance between an instance
x and the boundary is

:07

=0, (12)

D(x) = min {D, (x),D_(x)}, (13)

where
ul K(x,CT)+b uy K(x,CT)+by
VU KCCTul — \Ju K(C.CT g

Zu;rK(C,CT)u;r
(C.CTYul uj K(C.CT)u)

|
Dy (x) =

2+u;rK

| u] K(x,CT)+b _ u) K(x,CT)+by |
\/MTK(C,CTﬁtT \/u;K(CCT)u2
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We also define the degree of an instance x belonging to the positive class by:

D_(x) = (14)

|u] K(xCT )+b1\
|u;K +b2\\/

=
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In line with the arguments in above section, our minimization problem for generating
kernel-based nonlinear surfaces becomes the bilevel programming problem (BLPP):

i
min Z((uTK(xi,CT)—|—b|)2+czni)+

uyup,by,by,m.8 i =1
I+m n;
Yy Z 3 K(xix, CT) +b2)* +¢16i) (16)
i=l+1k=
TK T

s.t. uy K(xiz,C')+by > 11—y, & >0,
k=1,.nii=1+1,..m, (17)
uy K(xi,C1Y+by > 1—mpm; >0,i=1,...1, (18)
x; =argmax {d(x;;)},i=1,...0, (19)
Xij€B;

where ¢; > 0 and ¢, > 0 are positive parameters, C' is composed of the “witness" in-
stances x; (i = 1,...,1) in positive bags and all instances x; (k=1,...,n;, i=1+1,...,m)
in negative bags, d(x) is defined by (15).

Once the uy, u, by, by and the “witness" instances x; (i = 1, ...,/) are known from the
(16)—(19), the bag label information of a particular bag B is deduced by

TK(,CT)+by| /43 K(C,CTuy
F(B):sgn(l—max(|ul (x, T)—F 1| Vi 2
B uy K, CT)+bol -yt (c,CTyuf

~—
~—

(20)

3 Optimization Heuristics

The formulations (6)—(9) and (16)—(19) can be casted as mixed-integer programming.
In deriving optimization heuristics, we exploit the fact that for given integer variables, i.e.
the selected x; € B; (i = 1,...,1), the problem is reduced to a convex QP problems that
can be solved easily. Thus for solving the linear model problem, we arrive the following
algorithm.

Linear MI - TWSVM :

(1) Given the positive bags represented by By,---,B; with the label of +1 and the
negative bags by By, - - -, B4, with the label of —1, where B; = {xi1,Xi2, -+ , Xin, }
is the ith bag containing instances x;; € R",j=1,...,n;,i=1,...,1,.... +m;

(2) Select proper kernel function K(+, -) and parameters ¢; > 0, ¢, > 0, randomly select
initial instance x} in each positive bag B, i.e., xil =x,i=1,...,[;sett =1;

(3) Compute w/, by, w} and b} from instances {xf}f:l and all instances in negative
bags by solve the convex quadratic programming

I+m  n;
min Z( T4 b)) 4 Z Zézk» 2
Wbl .6 i=1 i=l+1k=
s.t. wh i+ B4 > 1 —Eg, 22)

Ex>0k=1,.ni=1+1,....[4+m, (23)
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and
I+m n;
s X Lol @
27 2 i=l+1k=
s.t. (W’unrb’)z —n;,ni>0i=1,..,1 (25)
(4) Compute xﬁ“, i=1,...,] where x”'1 is the optimal solution of the following prob-
lem:
maxd'(x;), (26)
ij i
where _ )
. ¢ s |W] x+b) ‘ [[w H
min {D+(x),D7(x)} |wt2;rx+bt‘ HW1H <1
froN x| (whll .
d ()C) - 0 |w’21x+b’\ HWIIH - 1’ (27)
. / / [wi x+5]  [wh] .
min {D+(x),D7(x)} |w’2Tx+b’2\ HW’IH > 1,
where
wh x+b’ wh x+h w’lTerb’l wh x+h
R+ Tpar | ZRar ~ et
D, (x)= D (x)= L . (28)
24 2(wh -wh) 2 2(wh-wh)
w115l (Wi TTTw5 ]|

Denote the corresponding optimal value as g’ (x;;).

(5) Compare Y!_, g (x; ]) w1th Y. ;&% (x;;). When their difference is small enough,
set x”l x; w’l+1 =wi, le =bj, w, Hl =wj and b’+1 = b}, stop; Otherwise, set
t=t+1, goto step (3);

(6) Construct the decision function

wiTx+ 07 [l

F(B)=sgn (1 —m
(B) = sgn (1 —max wiTx+ 3] |Iwil]

))- (29)

In line with the Linear MI-TWSVM, for solving the nonlinear model problem, we
arrive the following algorithm.
Nonlinear MI - TWSVM :

(1) Given the positive bags represented by Bj,:--,B; with the label of +1 and the
negative bags by By 1, - -+, Biyn, with the label of —1, where B; = {x;1, %2, -+ ,Xin; }
is the ith bag containing instances x;; € R, j=1,...,n;,i=1,...,[, ..., [ +m;

(2) Select proper kernel function K(-,-) and parameter ¢; > 0,c; > 0, randomly select
initial instance x; in each positive bag B, i.e., x] = x;1, sett = 1;

(3) Compute u), b}, u, and b, from instances {x!}!_, and all instances in negative bags
by solve the convex quadratic programming

l I+m n;
utmbirng Y (" K, CT) +64)* +er ) Zélk, (30)
11 i=1 i=l+1k=
st K, C'T) + b4 > 1&g, (€3]

éikZovk:17"'7ni7i:l+17"'7l+m3 (32)
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and
I+m n;
min Yy Z K (xi, C'T) + bh)? +cz2n,, (33)
uh,bh,m =l 1k= i=1
s.t. (th K(;@,C’T)+b’2) >1—-n,mi>0,i=1,...1, (34)

where C'T is composed of the current “witness" instances x/ (i = 1,...,) in positive
bags and all instances in negative bags.

(4) Compute X! (i = 1,...,1), where X" is the optimal solution of the following
problem:

max d' (x;;), (35)

XijE€B;

where

; . |ut TK (x,C'T)+b |
min {D ( D ( )} \uszK(x.C’T)-&-b’z\ \/u K(Ct ,C’T Wt
(

<1;

d(x)=40 \uik(x.cﬁwbﬂ
| K (x,C'T) 455 \/MITK<C1 T
(
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> 1;

Juy"
)
)i
=1 (36)
)
)
)

where
| W TK(x,C'T)+b} uh K (x,C'T)+bY
Vi K@ T\ bR e T

9
> 2ui TK(CC T T
+ ul TK(CTCT Y T TR (CF.C T
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Denote the corresponding optimal value as g’ (x;;).
(5) Compare Y!_, g'(x;;) with Y'!_; g7 (x;;). When their difference is small enough,
set xé“ =xf ulfl =uj, b’+1 = b*f, Wt = u; and b’;rl = b}, stop; Otherwise, set

t=t+1, goto step (3);
(6) Construct the decision function

Dy (x) =

(37

TR(x.CT) 4+ b* \/"*TK(C*>C*T)L‘*T
F(B) = sgn (1 — max (|ulT (x, *T) il VR 2
b s K G B TR (e 0T

). (3%

4 Experimental Results

To demonstrate the capabilities of our formulation we conduct experiments on the
same datasets with the ones in [1]. Two of these datasets are from the UCI machine
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learning repository[7], and ten from [1]. The two datasets from the UCI repository [7]
are the Musk datasets, which are commonly used in multiple instance classification. We
report results on these datasets for our nonlinear classification algorithm. We use the
datasets from [1] to evaluate our linear classification algorithm. Three of these datasets
are from an image annotation task in which the goal is to determine whether or not a
given animal appears in an image. The other seven datasets are from the OHSUMED data
and the task is to learn binary concepts associated with the Medical Subject Headings of
MEDLINE documents.

The testing accuracy of Algorithm are calculated using the standard 10-fold cross
validation method[6]. The regularization parameters c; and c; are selected from the set

{2/|i = —8,---,8} by 10-fold cross validation on the tuning set comprising of random
10% of the training data, and the RBF kernel parameter v is selected from the set {2'|i =
—12,---,4}. Algorithms terminate if the difference between the convex combination

coefficients is smaller than 1073 or the iterations & > 50.

Table 1. Ten-fold testing accuracy on the Musk-1 and Musk-2 datasets. The best
accuracy is shown in bold type figure.

Datasets IAPR SVM-CC MICA mi-SVM MI-SVM  MI-TWSVM
MUSK1 924 88.9 84.4 87.4 77.9 94.6
MUSK2  89.2 - 90.5 83.6 84.3 88.2

We compare our MI-TWSVM with IAPR[2], EM-DD[12], MICA[4], mi-SVM[1],
MI-SVM[1] and SVM-CC[11]. The 10-fold cross validation accuracy on “Musk1" and
“Musk2" is listed in Table 1, where the results for mi-SVM and MI-SVM, for IAPR and
MICA, and SVM-CC are taken from [1], [4] and [11] respectively. It can be seen from
Table 1 that our method gives the best correctness on the “Musk1" and is competitive with
the best one on “Musk2".

Table 2. Ten-fold testing accuracy on the Image datasets. The best accuracy is shown in
bold type figure.

Datasets EM-DD SVM-CC MICA mi-SVM MI-SVM  MI-TWSVM

Fox 56.1 - 58.7 58.2 57.8 62.5
Tiger 72.1 83.0 82.6 78.4 84.0 79.0
Elephant 78.3 81.5 80.5 82.2 81.4 83.5

The 10-fold cross validation accuracy on Image datasets is listed in Table 2, where
the results for EM-DD, mi-SVM and MI-SVM, for MICA, and SVM-CC are taken from
[1], [4] and [11] respectively. It can be seen from Table 2 that our method gives the
best correctness on the “Fox" and “Elephant”. This implies that our MI-TWSVM are
comparable methods with previous MIL.

Table 3.Ten-fold testing accuracy on the document categorization datasets. The best
accuracy is shown in bold type figure.
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Datasets EM-DD MICA mi-SVM  MI-SVM  MI-TWSVM

TST1 85.8 94.5 93.6 93.9 90.5
TST2 84.0 85.5 78.2 84.5 86.3
TST3 69.0 86.0 87.0 82.2 81.8
TST4 80.5 87.7 82.8 82.4 83.0
TST7 75.4 78.9 81.3 78.0 71.5
TST9 65.5 61.4 67.5 60.2 70.5
TSTI10 78.5 82.3 79.6 79.5 79.0

The 10-fold cross validation accuracy on on document categorization datasets is listed
in Table 3, where the results for EM-DD, mi-SVM and MI-SVM,and for MICA are taken
from [1], [4] respectively. The results in Table 3 are similar with that appeared in Table 2,
and therefore confirm the above conclusion further.

5 Conclusion

We have introduced a bilevel programming method to multiple instance classification,
termed MI-TWSVM. Different from maximizing the “margin" in other SVM-type meth-
ods in MIL, MI-TWSVM generates two non-parallel hyperplanes (positive hyperplane
and negative hyperplane) such that the positive hyperplane is close to “witness" instances
in positive bags and is distant from the all negative instances; at the same time, the neg-
ative hyperplane is close to negative instances and is distant from “witness" instances in
positive bags. The “witness" instance in positive bag is the “most positive" instance by
defining the degree of the distance belonging to positive class. Furthermore, our method
can be easily extended to nonlinear classifiers by using the nonlinear kernels. Results on
previously published datasets indicate that our approach is effective. Improvements on
better optimization and evaluation using a wide variety of datasets and algorithms, such
as those in [9], are promising avenues of future research.
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