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Abstract Clustering has been a powerful tool to visualize complex data with extensive applica-
tions in many disciplines. In this paper, we propose an optimization-based solution to the fuzzy
binary clustering problem by grouping all the data points into two clusters. Our model are based
on two assumptions. One is that the similar objects are labeled similarly, which is known as the
“cluster assumption” in semi-supervised learning. The other assumption is that the most dissimilar
two objects belong to different clusters. The problem is formulated as a quadratic programming
model and can seek the optimal fuzzy labels for the objects. Our model can be solved efficiently
by designing a fast algorithm. In addition, it can be reformulated as a linear programming solved
efficiently if the similarity matrix is sparse. Furthermore, this model can then be extended to explore
the hard-binary-clustering and multiple-clustering problems by a few modifications. Experiments
on both simulated and real data sets demonstrate the effectiveness of our method.

Keywords Fuzzy binary clustering; Quadratic programming; Linear programming; Spectral clus-
tering; Semi-supervised clustering

1 Introduction
Clustering has been a basic tool for researchers to explore the structures of the data in

various disciplines including data mining, document retrieval, image segmentation, bioin-
formatics, and so on. As a result a number of methods have been proposed. For instance,
objects can be grouped into clusters by parametric models (e.g. k-means algorithm [4])
or algorithms based on some distance or similarity measure (e.g. graph theoretic methods
[7], density estimation based methods [6] and physically motivated methods [1]). In this
paper, we propose an optimization-based approach for the fuzzy binary clustering prob-
lem. It is well known that binary clustering is a basic problem in clustering analysis and it
means that all the objects are exactly grouped into two clusters by labeling the objects ei-
ther zero or one. When binary clustering is properly addressed, it can be used recursively
to unravel the multiple-cluster structure of the data. Here, we extend it to fuzzy binary
clustering by assigning a fuzzy label between zero and one to every data object and don’t
require that the data object is classified definitely to some cluster. We think fuzzy binary
clustering can utilize more information from data than hard binary clustering and is more
reasonable for the real situation. So we pay more attention to fuzzy binary clustering in
this paper.
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Let X be a dataset of N objects and xi is the i-th object or data point. A similarity
matrix S is defined according to the similarity between any two objects and si j denotes
the similarity between xi and x j. Then the fuzzy binary clustering at hand is to assign
a real-valued label to each data point so that the information containing in the similarity
matrix S is extracted as much as possible.

Usually the objective is the “cluster assumption” [9] by requiring that similar objects
should belong to similar cluster, which can be expressed as a quadratic function of the
labels. In this case the clustering task is unsupervised. To obtain a proper clustering result,
prior information is needed. Here we introduce an intuitive assumption to add the prior
information that the most dissimilar two data points must belong to different clusters. This
is reasonable because all the data points would belong the same cluster otherwise. Then
we construct a quadratic programming model for fuzzy binary clustering. If the similarity
matrix S is sparse, the problem can be further reformulated as a linear programming model
and can be solved efficiently for large scale problems. Our new clustering model is closely
related to the semi-supervised learning and spectral clustering, which will be discussed
in detail in the algorithm section and the discussion section. Furthermore, the proposed
model can be easily extended to hard binary clustering by choosing a proper threshold
and multiple clustering by recursively solving the binary clustering model. Finally, the
applications of this new model are illustrated in the experiment section.

2 Method
Given the data set X , our fuzzy binary clustering procedure consists of two steps: (1)

calculating the similarity matrix; (2) solving the optimization model. Starting from the
basic fuzzy binary clustering model, we can further implement the hard binary clustering
or multiple clustering by presenting two algorithms in which the fuzzy binary clustering
serves as the elementary operations.

2.1 Calculating the similarity matrix
Clustering model is based on the similarity matrix of the data points and calculating

the similarity matrix is the pre-processing step. The method to calculate the similarity
matrix is very important because it determines what type of and how much information
is extracted from the original data set. In general, measuring the similarity of data points
depends on the particular application. So it is hard to give out a prevailing similarity
measure that fits everywhere. In this paper the similarity of data points in Rn is calculated
by their Gaussian kernels, which can be easily extended to other similarity measures.

Usually the calculated similarity matrix is dense. To facilitate the computation, the
full similarity matrix often needs to be converted to a sparse similarity matrix that can
be represented by a similarity graph. Two common strategies are the ε-neighborhood
graph and the k-nearest neighbor graph [3]. In the ε-neighborhood graph, Two points are
connected if their pairwise distance is smaller than ε . Because all the distances of the
connected points are roughly of the same scale (less than ε), the ε-neighborhood graph
is usually unweighted. In the k-nearest neighbor graph, xi is connected with x j if x j is
among the k nearest neighbors of xi and the edge ei j is weighted as the similarity score
of xi and x j. This results a directed graph. To guarantee the symmetry of the similarity
matrix, xi and x j are connected if both xi is among the k nearest neighbors of x j and x j is
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among the k nearest neighbors of xi. The resulting graph is named the mutual k-nearest
neighbor graph.

2.2 The optimization models
Given the similarity matrix S, we want to construct an optimization model to assign

a real-valued label fi to each data point xi so that, 1) similar data points have similar
labels, and 2) the most dissimilar two data points belong to two different clusters. The
optimization model can be written as followings:

min
f

N
∑

i=1

N
∑
j=1

si j( fi− f j)
2 (1)

subject to fa = 0 (2)
fb = 1 (3)
fi ≤ 1 i ∈ {1,2, · · · ,N} (4)
fi ≥ 0 i ∈ {1,2, · · · ,N} (5)

Here N is the total number of data points; si j is the known similarity score of data
points xi and x j; and fi is the unknown variable to be determined and represents the label
of data point xi. a and b are the most dissimilar two data points in the N data points, i.
e., sab = min{si j : i, j ∈ {1 · · ·N}}. The objective function (1) requires the similar data
points have similar labels. Constraints (2) and (3) force data points a and b belonging to
two different clusters. Constraints (4) and (5) restrict the labels fi to be between 0 and 1.

The objective function (1) can be further written in the vector form as:

f T L f (6)

where L is the Laplacian matrix of S, i.e., L = D− S and D is a diagonal matrix with
dii = ∑N

j=1 s ji. If si j are all non-negative, L is positive semi-definite. Then the model (1-5)
is a convex optimization problem and the global optimal solution is guaranteed.

If we replace the squared loss function by the absolute loss function, the model is
reformulated as follows:

min
f

N
∑

i=1

N
∑
j=1

si j| fi− f j| (7)

subject to fa = 0 (8)
fb = 1 (9)
fi ≤ 1 i ∈ {1,2, · · · ,N} (10)
fi ≥ 0 i ∈ {1,2, · · · ,N} (11)
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Let li j = si j( fi− f j), the model (7-11) can be further written as follows:

min
l, f

N
∑

i=1

N
∑
j=1
|li j| (12)

subject to li j = si j( fi− f j) i, j ∈ {1,2, · · · ,N} (13)
fa = 0 (14)
fb = 1 (15)
fi ≤ 1 i ∈ {1,2, · · · ,N} (16)
fi ≥ 0 i ∈ {1,2, · · · ,N} (17)

if all si j are non-negative.
By replacing li j by the difference of its positive part and negative part, the model can

be further converted to a linear programming problem as follows:

min
u,v, f

N
∑

i=1

N
∑
j=1

(ui j + vi j) (18)

subject to ui j− vi j = si j( fi− f j) i, j ∈ {1,2, · · · ,N} (19)
fa = 0 (20)
fb = 1 (21)
fi ≤ 1 i ∈ {1,2, · · · ,N} (22)
fi ≥ 0 i ∈ {1,2, · · · ,N} (23)

ui j ≥ 0 i, j ∈ {1,2, · · · ,N} (24)
vi j ≥ 0 i, j ∈ {1,2, · · · ,N} (25)

In the quadratic programming model (1-5), there are N variables. If the similarity graph
has M edges, the linear programming model has N+2∗M variables. Although it increases
the number of variables, it makes the objective function a linear function and facilitates
the solving of the model when the similarity graph is sparse.

Because the objective function is a graph Laplacian function, the quadratic program-
ming model is closely related to spectral clustering and semi-supervised learning. In
spectral clustering, the original data points are first embedded in a new Euclidean space
Rp and then k-means is utilized while the model we propose in this paper tries to group
the data points without k-means. k-means is a classical algorithm for clustering and can
give the correct clustering results in most cases. But it can not guarantee that the solution
is globally optimal because the objective function of the k-means algorithm is not convex
and it can only get local optimum depending on the choice of initial values. Different
from the semi-supervised learning, we introduce label information for two data points
by making the assumption that the most dissimilar two data points should belong to two
different clusters. Another difference regarding to semi-supervised learning is that the
labels of the unlabeled data points in our model are only required to be between 0 and 1,
whereas the labels of the unlabeled data points are forced to escape from the unlabeled
status in many semi-supervised models.
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2.3 Fast algorithm to solve the optimization model
If all si j are non-negative, the Laplacian matrix L is positive semi-definite. Then,

the quadratic programming is a convex programming problem. Generally speaking, it
can be solved by the sequential minimal optimization (SMO) algorithm which can deal
with large scale data sets and has been applied successfully to solve the optimization
problems in support vector machine applications [5]. In addition, the quadratic model can
be converted to the linear programming model as we mentioned above and solved by the
linear programming solvers which can deal with very large scale problems.

Here we propose an additional specific algorithm to solve the optimization problem
efficiently. It is very fast and can identify the clusters for large scale datasets with about
10,000 nodes. The Lagrange function of optimization model (1-5) is:

L = ∑
i

∑
j

Si j( fi− f j)
2 +α fa +β ( fb−1)−∑

i
γi fi +∑

i
ξi( fi−1)

Then the KKT condition is:

∂L
∂ fi

= 0⇒ γi−ξi = 2∑
j

Si j( fi− f j), i = 1,2, · · · ,N

γi fi = 0, ξi( fi−1) = 0 i = 1,2, · · · ,N
fa = 0, fb = 1, 0≤ fi ≤ 1
γi ≥ 0, ξi ≥ 0

These conditions can be further reduced as

fi = 0, or, fi =
∑
j

Si j f j

∑
j

Si j
, 1≤ i≤ N, i 6= a, i 6= b

fa = 0, fb = 1

Then we can use the following iterative algorithm to quickly find the solution from a
predetermined initial solution ( fa = 0, fb = 1, and fi = 0, i≤ 1≤ N, i 6= a, i 6= b):

f t+1
i =

∑
j

Si j f t
j

∑
j

Si j

It can be proven that the algorithm is convergent and the convergent solution satisfies
the constraints and the KKT condition. Finally the zero and non-zero entries in solution
fi (determined in practice as entries that are greater than a cutoff) define the final clusters.

2.4 Extension to hard binary clustering
If we impose the integer constraints on the label variables fi, i ∈ {1,2, · · · ,N}, the

optimization model will be an quadratic integer problem and will lead to a hard binary
clustering result. However, the integer programming is NP-hard. To get the hard binary
clustering result, we come out a two step method by solving fuzzy binary clustering first
and then choosing a threshold to convert the fuzzy labels to integer labels. Because the
fuzzy labels extract more information from the similarity matrix than the integer labels,
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the fuzzy binary clustering result is expected to be sufficient to give out the hard binary
clustering. Here we propose three types of criteria. The first and also the most straight-
forward threshold is 0.5. Considering the balance of the sizes of the resultant clusters, the
median of all the fuzzy labels is another type of threshold. In addition, we propose a third
type of criterion based on calculating the gaps among the fuzzy labels. The pseudo-code
of this strategy is described as follows:

1. Calculate the similarity matrix S; Identify a pair of data points a and b such that
sab = min{si j : i, j ∈ {1 · · ·N}}; Construct the optimization model (1-5) and solve
it.

2. Rank the { fi, i∈ {1 · · ·N}/{a,b}} from the smallest to the largest. Let h(k) = i if fi
is the k-th least, k ∈ {1 · · ·N−2}; Calculate gap statistics {gk = ‖ fh(k+1)− fh(k)‖ :
k ∈ {1 · · ·N−2}}; Identity k∗ = argmaxk{gk : k ∈ {1 · · ·N−2}}.

3. Set f ∗ = 1
2 ( fh(k∗)+ fh(k∗+1)); For i = 1 · · ·N, if fi < f ∗, let fi = 0; if fi > f ∗, let

fi = 1.

In the real application, the formation of clusters may be determined by more than one
factors. So multiple criteria can be considered simultaneously in the conversion from the
fuzzy labels to the binary labels.

2.5 Extension to multiple clustering
The data sets in real applications may have more than two clusters. For these cases,

we recursively solve our model to classify the data points into two clusters on each step
until some stopping criterion is applied. Here we propose two criteria. The pseudo-codes
are as follows:

• Minimum similarity score criterion:

1. Step 1: group the data points into two clusters by the method we proposed for
hard binary clustering.

2. Step 2: calculate the inner minimum similarity score for each cluster. If the
minimum similarity score of some cluster is less than a predefined threshold,
then repeat to Step 1 to group the data points of this cluster into two new
clusters.

3. Step 3: repeat Step 2 until all the inner minimum similarity scores of the
clusters are above the threshold.

• Cluster size criterion:

1. Step 1: group the data points into two clusters by the method we proposed for
hard binary clustering.

2. Step 2: calculate the numbers of data points in each cluster. If the number of
data points in some cluster is above a predefined threshold, then repeat Step
1 to group the data points of this cluster into two new clusters.

3. Step 3: repeat Step 2 until all the numbers of data points in each cluster are
less than the predefined threshold.

Both the algorithms do not require the number of clusters but requires to define the
least tolerant similarity score within clusters or the the most tolerant number of data points
in each cluster. Compared with the number of clusters, these two thresholds are relatively
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Figure 1: A ladder graph with twenty nodes
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Figure 2: The distribution of the fuzzy labels of the ladder graph

easy to be defined. Furthermore, the algorithm we propose can be applied to the cases in
which the data set consists of more than two clusters but the clusters are not organized
hierarchically. This will be illustrated by examples in the next section.

3 Experiments
In this section, we show the computational results on both simulated and real datasets.

The simulated datasets are used to exemplify how the model groups the data points into
clusters. The real data sets are used to test if the model can reveal the true associations
underlying the real data. The optimization model is implemented and solved by MATLAB
on a PC with 2.4G Hz Pentium 4 processor.

3.1 Experimental results on simulated datasets
We constructed two simulated datasets. One is a ladder graph which is used to show

how the fuzzy binary clustering works and how the hard binary clustering is generated
based on the fuzzy binary clustering result. The other is a graph with three connected
components used to show how non-hierarchically-organized multiple clusters are revealed
by our algorithm.

For the ladder graph (Figure 1), the similarity score for vertex vi and v j is defined as
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Table 1: The fuzzy labels of the nodes in the ladder graph.

No. of nodes Fuzzy labels No. of nodes Fuzzy labels
1 0 6 0.4662
2 0.0944 7 0.4908
3 0.1875 8 0.4975
4 0.2806 9 0.4993
5 0.3737 10 0.4998

11 1 16 0.5338
12 0.9056 17 0.5092
13 0.8125 18 0.5025
14 0.7194 19 0.5007
15 0.6263 20 0.5002

Figure 3: A graph with three connected components

follows:
si j = e−

di j
σ (26)

where di j is the length of the shortest path from vi to v j and σ = 5. Applying our model to
the ladder graph assigns fuzzy labels between 0 and 1 to each node (Table 1). Sorting the
fuzzy labels in the ascending order illustrates the relationships among the nodes (Figure
2). Setting the threshold as 0.5, the nodes from v1 to v10 form a cluster and the nodes
from v11 to v20 form another cluster. Each cluster corresponds to a leg of the ladder.
Considering the balance between clusters gets the same result. If the gap statistics is used
to convert the fuzzy labels to the hard labels, the nodes nearest to 0.5 form a cluster while
the nodes nearest to 0 or 1 form singleton clusters, that is, outliers. This is reasonable
from the ladder graph, suggesting that the model can be applied to identify outliers if the
gap statistics is used.

To illustrate that our model can deal with the cases with multiple clusters, we show
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Figure 4: The Zachary’s karate club friendship network (circle: Cluster 1; diamond: Clus-
ter 2).

the results on a graph with three connected components of which each connected com-
ponents is a clique (Figure 3). The adjacency matrix is just used as the similarity matrix.
Obviously there are three clusters in the graph and it is intuitively hard to depict exactly
the multiple-cluster structure by a binary clustering method. We apply our model on the
graph and set the vertex v1 and v6 as the most dissimilar node pair. The result shows that
the nodes from v1 to v5 and from v11 to v15 are all labeled with 0 while the nodes from v6
to v10 are labeled with 1. That is, the dissimilarity information between {v1,v2,v3,v4,v5}
and {v11,v12,v13,v14,v15} is omitted, so the cluster structure among them collapses and
they form a meta-cluster. Meanwhile, the dissimilar information between v1 and v6 is
utilized and the cluster structure with nodes {v6,v7,v8,v9,v10} is revealed. Applying our
model further on the meta-cluster which is heterogeneous and of more nodes reveals the
cluster structures among {v1,v2,v3,v4,v5} and {v11,v12,v13,v14,v15}.

3.2 Experimental results on real data sets
We test our model on two real data sets. One is the Zachary’s karate club friendship

network [8]. The club consists of 34 members, and splits into two smaller clubs after
a dispute happened during the course of Zachary’s study (Figure 4). We calculate the
Pearson correlation coefficients of the nodes as the similarity scores. Although some of
the elements of the similarity matrix are negative, the Laplacian matrix is positive definite.
So we calculate the fuzzy labels based on this similarity matrix. The fuzzy labels for all
the members are depicted in Figure 5. If the threshold is chosen as 0.5, then the resultant
two clusters are just consistent with the real division of the club. If the numbers of nodes
in both clusters are the same, then v9 is misclassified to Cluster 1. If the maximum gap is
set to the threshold, then v14 and v20 are misclassified to Cluster 2. These three nodes are
expected to be the intermediate nodes. This suggests that our model is valid to extract the
true cluster structures of real data sets.

The other real data set is the well-known Iris data set which is used frequently in
clustering and classification [2]. In the Iris data set, there are three clusters. Cluster
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Figure 5: The fuzzy labels for the Zachary’s karate club friendship network.

1 is linearly separated from Cluster 2 and Cluster 3, while Cluster 2 and Cluster 3 can
not be classified linearly. Here, we use the Gaussian kernel to construct the similarity
matrix (σ = 1). The first binary clustering separates Cluster 1 from Cluster 2 and Cluster
3 accurately. The second run separates Cluster 2 from Cluster 3 with only four data
points misclassified, suggesting that our model can be used to reveal the multiple-cluster
structure of real datasets.

4 Conclusion
In this paper we propose a new computational model to group the data points in some

data set into clusters. A quadratic programming model is proposed for fuzzy binary clus-
tering. In addition, the model has been extended to hard binary clustering and multiple
clustering. Different from the classical k-means method, the model we propose is con-
vex and the global optimal solution is guaranteed. It operates on the similarity matrix of
the original data set. So the kernel trick can be applied here to deal with the nonlinear
cases. Similar to the semi-supervised methods, “prior” information is introduced but in
our model it is derived from the similarity matrix. It is closely related to the spectral
clustering in which the second least eigenvector is a non-trivial solution of the objective
function of our model but in our model the solution has concrete meanings, which is in-
terpreted as the labels of the data points. Experiments on the simulated and real data sets
suggest the validity of our method and we expect it provides a useful tool for exploring
the structures of data sets in the real world.
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