The Ninth International Symposium on Operations Research and Its Applications (ISORA'10) Chengdu-Jiuzhaigou, China, August 19–23, 2010 Copyright © 2010 ORSC & APORC, pp. 400–405

Equitable △-Coloring of Planar Graphs without 4-cycles

Xiang Tan*

School of Statistics and Mathematics, Shandong University of Finance, Jinan, Shandong, 250014, China

Abstract In this paper, we prove that if *G* is a planar graph with maximum degree $\Delta \ge 7$ and without 4-cycles, then *G* is equitably *m*-colorable for any $m \ge \Delta$.

1 Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [1]. Let *G* be a graph, we use V(G), |G|, E(G), e(G), $\Delta(G)$ and $\delta(G)$ to denote the vertex set, order, the edge set, size, the maximum (vertex) degree and the minimum (vertex) degree of *G*, respectively. For subsets *U* and *W* of V(G), we denote by e(U,W) the number of edges with one ends in *U* and the other in *W*. If $U = \{v\}$, we write $e(\{v\}, W)$ for e(v, W). A subset *V'* is called an independent *s*-set of *G* if |V'| = s and no two vertices of *V'* are adjacent in *G*. Let $G \cup H$ denote the union of two vertex-disjoint graphs *G* and *H*. For a planar graph *G*, the degree of a face *f*, denoted by d(f), is the number of edges incident with it, where each cut-edge is counted twice. And we use Φ and r_i to denote the number of faces and *i*-faces in the planar graph *G*, respectively.

An *equitable k-coloring* of a graph G is a proper k-coloring, for which any two color classes differ in size by at most one. If f is an equitable coloring of G using k colors, then we say that f is an equitable k-coloring of G. The least integer k for which G has an equitable k-coloring is defined to be the *equitable chromatic number* of G and denoted by $\chi_e(G)$. The least integer k for which G has an equitable k'-coloring of G for every $k' \ge k$ is denoted by $\chi^*(G)$.

Hajnal and Szemerédi [5] proved that any graph with maximum degree $\Delta(G) \leq m$ has an equitable (m+1)-coloring. In 1994, Chen, Lih and Wu [3] proved that *G* is equitably Δ -colorable if *G* is a connected graph with $\Delta(G) \geq \frac{|G|}{2}$ or $\Delta(G) \leq 3$ and *G* is different from K_m and $K_{2m+1,2m+1}$ for all $m \geq 1$. And based on the above result, they put forth the following conjecture:

Conjecture 1. A connected graph *G* is equitably $\Delta(G)$ -colorable if it is different from K_m , C_{2m+1} , and the complete bipartite graph $K_{2m+1,2m+1}$ for all $m \ge 1$.

^{*}Corresponding author. E-mail address: xtandw@126.com

For planar graphs, Yap and Zhang [9] proved that a planar graph is equitably *m*-colorable for any $m \ge \Delta(G) \ge 13$, and they also proved in [8] that Conjecture 1 is true for outerplanar graphs. In this paper, we prove the following theorem:

Theorem 1. Let *G* be a planar graph with $\Delta(G) \ge 7$ and without 4-cycles. Then *G* is equitably *m*-colorable for any $m \ge \Delta(G)$.

2 Some useful Lemmas

Let us introduce some notations and definitions, they are similar to that of [6]. Let *G* be a graph with *mt* vertices. A *nearly equitable m*-coloring of *G* is a proper coloring *f*, whose color classes all have size *t* except for one small class $V^- = V^-(f)$ with size t - 1 and one large class $V^+ = V^+(f)$ with size t + 1. Given such a coloring *f*, define an auxiliary digraph $\mathcal{H} = \mathcal{H}(f)$ as follows. The vertices of \mathcal{H} are the color classes of *f*. A directed edge *UW* belongs to $E(\mathcal{H})$ iff some vertex $y \in U$ has no neighbors in *W*. In this case we say that *y* is *movable* to *W*. Call $W \in V(\mathcal{H})$ accessible, if V^- is reachable from *W* in \mathcal{H} . So V^- is trivially accessible. Let $\mathcal{A} = \mathcal{A}(f)$ denote the family of accessible classes, $A := \bigcup \mathcal{A}, r := |\mathcal{A}|$ and $B := V(G) \setminus A$.

Lemma 1. If G has a nearly equitable coloring, whose large class V^+ is accessible, then it has an equitable coloring with the same number of colors.

Suppose $V^+ \subseteq B$. Then |A| = rt - 1, |B| = (m - r)t + 1 and $d_A(y) \ge r$ for each vertex $y \in B$. For an accessible class $U \in \mathcal{A}$, define $\mathcal{S}_U(f)$ to be the set of classes $X \in \mathcal{A}$ such that there is an XV^- -path in $\mathcal{H} - U$ and $\mathcal{T}_U := \mathcal{T}_U(f) := \mathcal{A} \setminus (\mathcal{S}_U(f) + U)$. Call U terminal, if $\mathcal{S}_U(f) = \mathcal{A} - U$, otherwise U is non-terminal. Trivially, V^- is non-terminal. Choose a non-terminal U such that $|\mathcal{T}_U|$ is minimum and set $\mathcal{A}' := \mathcal{T}_U$. Let $A' := \bigcup \mathcal{A}'(f) := \bigcup \mathcal{A}'$.

Lemma 2. Every class in \mathscr{A}' is terminal.

The proof of Lemma 1 and Lemma 2 can be found in [6].

An edge *zy* is *solo* if $z \in W \in \mathscr{A}'$, $y \in B$ and $N_W(y) = \{z\}$. The ends of solo edges are called *solo vertices* and vertices linked by solo edges are called *special neighbors* of each other. Let S_z denote the set of special neighbors of *z*.

Lemma 3. Let *G* be a planar graph of order *mt* and without 4-cycles. Then $e(G) \leq \frac{15}{7}mt - \frac{30}{7}$ and $\delta(G) \leq 4$.

Proof. We need only to consider the case that *G* is connected. Since *G* contains no 4cycles, it doesn't contain adjacent 3-cycles, we have $3r_3 \le e(G)$. Thus $5\Phi - 2r_3 = 5(r_3 + r_5 + \dots + r_n) - 2r_3 \le 3r_3 + 5r_5 + \dots + nr_n = \sum_{f \in F} d(f) = 2e(G)$. We have $\Phi \le \frac{8e(G)}{15}$. By Euler's formula $|G| - e(G) + \Phi = 2$, we have $e(G) \le \frac{15}{7}(|G| - 2) = \frac{15}{7}mt - \frac{30}{7}$. In [2], Borodin proved that $\delta(G) \leq 4$ for each plane graph without adjacent triangles. It completes the proof of Lemma 3.

Lemma 4. Every planar graph without 4-cycles is 4-choosable.

The proof of Lemma 4 can be found in [7].

Lemma 5. Let *m* and *s* be positive integers. Suppose *G* is a planar graph with $\Delta(G) \leq m$ and without 4-cycles. If *G* has an independent *s*-set *V'* and there exists $C \subseteq V(G) \setminus V'$ such that $|C| > \frac{s(m+2)}{2}$ and $e(v, V') \geq 1$ for any $v \in C$, then *C* contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V'$.

Proof. Let $C_1 \subseteq C$ be such that each $v \in C_1$ is adjacent to exactly one vertex of V'. Let $|C_1| = r$. Then $r + 2(|C| - r) \leq e(C, V') \leq ms$, from which it follows that $r \geq 2|C| - ms > 2s$. Hence V' contains at least one vertex γ which is adjacent to at least three vertices of C_1 . As *G* is a planar graph without 4-cycles, C_1 contains two nonadjacent vertices α and β which are adjacent to γ .

Lemma 6. Let *G* be a planar graph with maximum degree $\Delta(G) \leq m$ and without 4-cycles, |G| = mt. Let *f* be a nearly equitable coloring of *G* and $V^+(f) \subseteq B$. If $|B| = (m-r)t + 1 > \frac{mt}{2}$ and $r \geq 3$, then there exists a solo vertex $z \in W \in \mathscr{A}'$ such that either *z* is movable to a class in $\mathscr{A} \setminus \{W\}$ or *z* has two nonadjacent neighbors in *B*.

Proof. Suppose not. Let *S* be the set of solo vertices in *W*. As *G* is a planar graph without 4-cycles, we can get $|S_z| \le 2$ for any $z \in S$. Then there exists at most 2|S| vertices in *B* which has exactly one neighbor in *W*, thus $e(W,B) \ge 2|S| + 2(|B| - 2|S|) = 2|B| - 2|S|$. And since no vertex in *S* is movable to a class in $\mathscr{A} \setminus \{W\}$, each $z \in S$ satisfies $d_A(z) \ge r-1$, we can get $d_B(z) \le m - (r-1)$. Thus $2|B| - 2|S| \le e(W,B) \le [m - (r-1)]|S| + m(t - |S|)$. It follows that $2|B| - mt + (r-3)|S| \le 0$, a contradiction.

Lemma 7. Let *m* and *t* be positive integers. Let *H* be a graph of order *mt* with vertex chromatic number $\chi \le m$. If $e(H) \le (m-1)t$, then *H* is equitably *m*-colorable.

The Proof of Lemma 7 can be found in [9].

Lemma 8. Let $m \ge 5$ and $t \ge 2$ be integers. Let *G* be a planar graph with maximum degree $\Delta(G) \le m$ and without 4-cycles, |G| = mt. If $e(G) \le (\frac{1}{7}m + \frac{30}{7})t + m - 3$, then *G* is equitably *m*-colorable.

Proof. Suppose for a contradiction, that *G* is an edge-minimal counterexample to the lemma. As *G* is planar and without 4-cycles, by Lemma 3, *G* has an edge $xy \in E(G)$ where $d(x) \leq 4$. By minimality, G - xy has an equitable *m*-coloring ϕ which has color classes V_1, V_2, \dots, V_m , where $|V_i| = t$ for $i = 1, 2, \dots, m$. Clearly we only need to consider the case that x, y are in the same color class. Without loss of generality, assume $x, y \in V_1$ and $N(x) \subseteq V_1 \cup V_2 \cup \cdots \cup V_4$. Let $V^- = V_1 \setminus \{x\}, V^+ = V_m \cup \{x\}$. Thus we get a nearly equitable *m*-coloring *f* of *G*. Clearly $V^+ \subseteq B$ by Lemma 1. If there exists V_i for some

 $5 \le j < m$, such that V_j is accessible, let \mathscr{P} be a path in \mathscr{H} from V_j to V^- . Since V^+ contains a vertex *x* that has no neighbors in V_j , $\mathscr{P}_1 = \mathscr{P} \cup \{V^+V_j\}$ is a path from V^+ to V^- in \mathscr{H} . Thus *G* has an equitable *m*-coloring by Lemma 1, a contradiction. So we can get $r = |\mathscr{A}(f)| \le 4$, $\bigcup_{i=5}^m V_i \cup \{x\} \subseteq B(f)$.

Case 1. r = 4. Then |A| = 4t - 1, |B| = (m - 4)t + 1 and $e(A, B) \ge 4[(m - 4)t + 1]$. Let $A^+ = A \cup \{x\}$.

If $e(G[A]) \le 3t - 4$, then $e(G[A^+]) \le 3t$. By Lemma 7, $G[A^+]$ is equitably 4-colorable. Consequently *G* is equitably *m*-colorable.

Otherwise, e(G[A]) > 3t - 4. Then $e(G) \ge e(A, B) + e(G[A]) > 4[(m-4)t+1] + (3t - 4) = (4m - 13)t \ge e(G)$, a contradiction.

Case 2. r = 3 or r = 2. In this case, $e(A, B) \ge \min\{3(m-3)t + 3, 2(m-2)t + 2\} > e(G)$, a contradiction.

Case 3. r = 1. Then $e(A, B) \ge (m-1)t + 1$ and $|B| = (m-1)t + 1 > \frac{(t-1)(m+2)}{2}$. By Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and the same vertex $\gamma \in V^-$. Let $G_1 = G[B \setminus \{\alpha, \beta\} \cup \{\gamma\}]$ and $G_2 = G[V^- \setminus \{\gamma\} \cup \{\alpha, \beta\}]$. Then $|G_1| = (m-1)t$, $\Delta(G_1) \le m-1$ and $e(G_1) \le e(G[B]) + m - 2 \le (\frac{1}{7}m + \frac{30}{7})t + m - 3 - [(m-1)t + 1] + m - 2 = (\frac{37}{7} - \frac{6}{7}m)t + 2m - 6 \le (m-2)t$. Thus G_1 is equitably (m-1)-colorable by Lemma 7. Consequently G is equitably m-colorable.

Lemma 9. Let $m \ge 6$ and $t \ge m - 4$ be integers. Let G be a planar graph with maximum degree $\Delta(G) \le m$ and without 4-cycles, |G| = mt. If $e(G) \le (\frac{8}{7}m + \frac{15}{7})t + m - \frac{44}{7}$, then G is equitably m-colorable.

Proof. Suppose for a contradiction, that *G* is an edge-minimal counterexample to the lemma. Similar to the proof of Lemma 8, we can get a nearly equitable *m*-coloring *f* of *G* such that $r = |\mathscr{A}(f)| \le 4$, $\bigcup_{j=5}^{m} V_j \cup \{x\} \subseteq B(f)$.

Case 1. r = 4. Then |A| = 4t - 1, |B| = (m - 4)t + 1 and $e(A, B) \ge 4[(m - 4)t + 1]$. Let $A^+ = A \cup \{x\}$.

If $e(G[A]) \le 3t - 4$, then $e(G[A^+]) \le 3t$. By Lemma 7, $G[A^+]$ is equitably 4-colorable, Consequently *G* is equitably *m*-colorable.

Otherwise, e(G[A]) > 3t - 4. Then e(G) > 4[(m-4)t + 1] + (3t - 4) = (4m - 13)t > e(G), a contradiction.

Case 2. r = 3. In this case, $e(A, B) \ge 3(m-3)t + 3 > e(G)$, a contradiction.

Case 3. r = 2. Then $e(A,B) \ge 2(m-2)t+2$ and $|B| = (m-2)t+1 > \frac{(t-1)(m+2)}{2}$. By Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and the same vertex $\gamma \in V^-$. Let $G_1 = G[B \setminus \{\alpha, \beta\} \cup \{\gamma\}]$ and $G_2 = G[(V^- \setminus \{\gamma\} \cup \{\alpha, \beta\}) \cup (A \setminus \{V^-\})]$. Then $|G_1| = (m-2)t$, $\Delta(G_1) \le m-2$ and $e(G_1) \le e(G[B]) + m - 2 \le (\frac{8}{7}m + \frac{15}{7})t + m - \frac{44}{7} - 2[(m-2)t+1] + m - 2 = (\frac{43}{7} - \frac{6}{7}m)t + 2m - \frac{72}{7} \le (m-3)t$. Thus G_1 is equitably (m-2)-colorable by Lemma 7. Consequently G is equitably m-colorable.

Case 4. r = 1. Then $e(A,B) \ge (m-1)t + 1$ and $|B| = (m-1)t + 1 > \frac{(t-1)(m+2)}{2}$. By Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and the same vertex $\gamma \in V^-$. Let $G_1 = G[B \setminus \{\alpha, \beta\} \cup \{\gamma\}]$ and $G_2 = G[V^- \setminus \{\gamma\} \cup \{\alpha, \beta\}]$. Then $|G_1| = (m-1)t$, $\Delta(G_1) \le m-1$ and $e(G_1) \le e(G[B]) + m - 2 \le (\frac{8}{7}m + 1)$

 $\frac{15}{7}t + m - \frac{44}{7} - [(m-1)t+1] + m - 2 = (\frac{1}{7}m + \frac{22}{7})t + 2m - \frac{65}{7} \le [\frac{1}{7}(m-1) + \frac{30}{7}]t + (m-1) - 3$. Thus G_1 is equitably (m-1)-colorable by Lemma 8. Consequently G is equitably m-colorable.

3 Proof of Theorem 1

Theorem 1. Let *G* be a planar graph with maximum degree $\Delta(G) \ge 7$ and without 4-cycles. Then *G* is equitably *m*-colorable for any $m \ge \Delta(G)$.

Proof. First we consider the case that |G| is divisible by *m*. Without loss of generality, assume |G| = mt.

Suppose for a contradiction, that *G* is an edge-minimal counterexample to the Theorem. Similar to that of Lemma 8, we can get a nearly equitable *m*-coloring *f* of *G*, $r = |\mathscr{A}| \le 4, \bigcup_{j=5}^{m} V_j \cup \{x\} \subseteq B.$

Case 1. r = 4. In this case, |B| = (m-4)t + 1 and $e(A,B) \ge 4[(m-4)t + 1]$. Let $A^+ = A \cup x$.

If $e(G[A]) \le 3t - 4$, then $e(G[A^+]) \le 3t$. By Lemma 7, $G[A^+]$ is equitably 4-colorable, Consequently *G* is equitably *m*-colorable.

Otherwise, e(G[A]) > 3t - 4. Then e(G) > 4[(m-4)t + 1] + (3t - 4) = (4m - 13)t > e(G), a contradiction.

Case 2. r = 3. In this case, $e(A, B) \ge 3(m-3)t + 3$ and $|B| = (m-3)t + 1 > \frac{mt}{2}$.

By Lemma 6, there exists a solo vertex $z \in W \in \mathscr{A}'$ and a vertex $y_1 \in S_z$ such that either z is movable to a class $X \in \mathscr{A} \setminus \{W\}$, or z is not movable in \mathscr{A} and there exists another vertex $y_2 \in S_z$, which is not adjacent to y_1 .

Subcase 2.1. *z* is movable to a class $X \in \mathscr{A} \setminus \{W\}$. Let $G_1 = G[A \cup \{y_1\}], G_2 = G[B \setminus \{y_1\}]$. Since $W \in \mathscr{A}'(f)$, there exists a path \mathscr{P} from *X* to $V^-(f)$ in $\mathscr{H}(f) - W$ by Lemma 2. Move *z* to *X* and *y*₁ to $W \setminus \{z\}$ to obtain a nearly equitable 3-coloring φ of G_1 with $V^+(\varphi) = X \cup \{z\}$. Let $\mathscr{P}^* = \mathscr{P} + V^+(\varphi) - X$. Then \mathscr{P}^* is a path from $V^+(\varphi)$ to $V^-(\varphi)$ in $\mathscr{H}(\varphi)$. Thus G_1 has an equitable 3-coloring φ' by Lemma 1. Moreover, $|G_2| = (m-3)t$ and $e(G_2) \le e(G[B]) \le e(G) - e(A,B) \le \frac{15}{7}mt - \frac{30}{7} - 3[(m-3)t+1] = (9 - \frac{6}{7}m)t - \frac{51}{7} \le (m-4)t$. By Lemma 7, G_2 has an equitable (m-4)-coloring *g*. Then $\varphi' \cup g$ is an equitable *m*-coloring of *G*.

Subcase 2.2. *z* is not movable to any class in \mathscr{A} . Then $d_A(z) \ge 2$. Since $W \in \mathscr{A}(f)$, there exists a path \mathscr{P} from *W* to $V^-(f)$ in $\mathscr{H}(f)$. Let $G_1 = G[A \setminus \{z\} \cup \{y_1, y_2\}]$, $G_2 = G[B \setminus \{y_1, y_2\} \cup \{z\}]$. Move y_1 and y_2 to $W \setminus \{z\}$ to obtain a nearly equitable 3-coloring φ of G_1 with $V^+(\varphi) = W \setminus \{z\} \cup \{y_1, y_2\}$. Let $\mathscr{P}^* = \mathscr{P} + V^+(\varphi) - W$. As *z* is not movable to any class in $\mathscr{A}(f)$, we can get \mathscr{P}^* is a path from $V^+(\varphi)$ to $V^-(\varphi)$ in $\mathscr{H}(\varphi)$. Thus G_1 has an equitable 3-coloring φ' by Lemma 1. Moreover, $|G_2| = (m-3)t$ and $e(G_2) \le e(G[B]) + (m-4) \le \frac{15}{7}mt - \frac{30}{7} - 3[(m-3)t+1] + (m-4) = (9 - \frac{6}{7}m)t + m - \frac{79}{7} \le (m-5)t$. Then G_2 has an equitable (m-4)-coloring *g* by Lemma 7. Thus $\varphi' \cup g$ is an equitable *m*-coloring of *G*.

Case 3. r = 2. In this case, $(m-2)t + 1 \le e(V^-, B) \le m(t-1)$, and it follows that $t \ge 4$. Clearly $|B| = (m-2)t + 1 > \frac{(t-1)(m+2)}{2}$ and $e(v, V^-) \ge 1$ for any $v \in B$. By Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and

the same vertex $\gamma \in V^-$. Let $G_1 = G[B \setminus \{\alpha, \beta\} \cup \{\gamma\}]$ and $G_2 = G[(V^- \setminus \{\gamma\} \cup \{\alpha, \beta\}) \cup (A \setminus \{V^-\})]$. Then $|G_1| = (m-2)t$, $\Delta(G_1) \leq m-2$ and $e(G_1) \leq e(G[B]) + m - 2 \leq \frac{15}{7}mt - \frac{30}{7} - 2[(m-2)t+1] + m - 2 = (\frac{1}{7}m+4)t + m - \frac{58}{7} = [\frac{1}{7}(m-2) + \frac{30}{7}]t + (m-2) - \frac{44}{7}$. By Lemma 8, G_1 is equitably (m-2)-colorable. Consequently *G* is equitably *m*-colorable.

Case 4. r = 1. In this case, $(m-1)t + 1 \le e(V^-, B) \le m(t-1)$, and it follows that $t \ge m+1$. Clearly $|B| = (m-1)t + 1 > \frac{(t-1)(m+2)}{2}$. By Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and the same vertex $\gamma \in V^-$. Let $G_1 = G[B \setminus \{\alpha, \beta\} \cup \{\gamma\}]$ and $G_2 = G[V^- \setminus \{\gamma\} \cup \{\alpha, \beta\}]$. Then $|G_1| = (m-1)t$, $\Delta(G_1) \le m-1$ and $e(G_1) \le e(G[B]) + m-2 \le \frac{15}{7}mt - \frac{30}{7} - [(m-1)t+1] + m-2 = (\frac{8}{7}m+1)t + m - \frac{51}{7} = [\frac{8}{7}(m-1) + \frac{15}{7}]t + (m-1) - \frac{44}{7}$. Thus G_1 is equitably (m-1)-colorable by Lemma 9. Consequently G is equitably m-colorable.

If |G| is not divisible by *m*, without loss of generality, assume that |G| = m(t+1) - j, where 0 < j < m. Use induction on |G|. As *G* is planar and without 4-cycles, *G* has an edge $xy \in E(G)$ where $d(x) \leq 4$. By the induction hypothesis, G - x has an equitable *m*-coloring Φ with color classes V_1, V_2, \dots, V_m , where $|V_i| = t$ or $|V_i| = t + 1$. Assume $N(x) \subseteq V_1 \cup V_2 \cup V_3 \cup V_4$. If there exists some $i \geq 5$ such that $|V_i| = t$, then by adding *x* to V_i to obtain an equitable *m*-coloring. Otherwise, $|V_i| = t + 1$ for any $i \geq 5$, we have |G| = m(t+1) - j, 0 < j < 4. Let $G' = G \cup K_j$, then G' is equitably *m*-colorable by the above proof, and so is *G*.

Hence we complete the proof of Theorem 1.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph theory with applications, North-Holland, New York, 1976.
- [2] O.V.Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory, 12, No. 2 (1996), 183-186.
- [3] B.L.Chen, K.W.Lih and P.L. Wu, Equitable coloring and the maximum degree, *European J. Combin.*, 15(1994), 443-447.
- [4] H. Grötzsch, Ein Drefarbensatz fur dreikreisfreie Netze auf der Kugel, Wiss Z Martin-Luther-Univ Halle-Wittenberg, Mat-Natur Reche, 8(1959), 109-120.
- [5] A. Hajnal, E.Szemerédi, Proof of conjecture of Erdős, in :P.Erdős, A.Rényi,V.T.Sós (Eds.), *Combinatorial Theory and its application, North-holland, London*, (1970), 601-603.
- [6] H.A.Kierstead, A.V.Kostochka, An ore-type theorem on equitable coloring, J. Combin. Theory Ser. B, 98(2008), 226-234.
- [7] P.Ch.B.Lam, B.G.Xu and J.Zh.Liu, The 4-Choosability of Plane Graphs without 4-Cycles, J. Combin. Theory Ser. B, 76(1999), 117-126.
- [8] H.P.Yap, Y.Zhang, The equitable Δ-coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sinca, 25(1997), 143-149.
- [9] Y.Zhang, H.P.Yap, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput., 27(1998), 97-105.