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Abstract In this paper, we prove that if G is a planar graph with maximum degree ∆ ≥ 7 and
without 4-cycles, then G is equitably m-colorable for any m≥ ∆.

1 Introduction
In this paper, all graphs are finite, simple and undirected. Any undefined notation

follows that of Bondy and Murty [1]. Let G be a graph, we use V (G), |G|, E(G), e(G),
∆(G) and δ (G) to denote the vertex set, order, the edge set, size, the maximum (vertex)
degree and the minimum (vertex) degree of G, respectively. For subsets U and W of
V (G), we denote by e(U,W ) the number of edges with one ends in U and the other in W .
If U = {v}, we write e({v},W ) for e(v,W ). A subset V ′ is called an independent s-set of
G if |V ′| = s and no two vertices of V ′ are adjacent in G. Let G∪H denote the union of
two vertex-disjoint graphs G and H. For a planar graph G, the degree of a face f , denoted
by d( f ), is the number of edges incident with it, where each cut-edge is counted twice.
And we use Φ and ri to denote the number of faces and i-faces in the planar graph G,
respectively.

An equitable k-coloring of a graph G is a proper k-coloring, for which any two color
classes differ in size by at most one. If f is an equitable coloring of G using k colors,
then we say that f is an equitable k-coloring of G. The least integer k for which G has an
equitable k-coloring is defined to be the equitable chromatic number of G and denoted by
χe(G). The least integer k for which G has an equitable k′-coloring of G for every k′ ≥ k
is denoted by χ∗(G).

Hajnal and Szemerédi [5] proved that any graph with maximum degree ∆(G)≤m has
an equitable (m+1)-coloring. In 1994, Chen, Lih and Wu [3] proved that G is equitably
∆-colorable if G is a connected graph with ∆(G) ≥ |G|2 or ∆(G) ≤ 3 and G is different
from Km and K2m+1,2m+1 for all m≥ 1. And based on the above result, they put forth the
following conjecture:

Conjecture 1. A connected graph G is equitably ∆(G)-colorable if it is different from
Km, C2m+1, and the complete bipartite graph K2m+1,2m+1 for all m≥ 1.
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For planar graphs, Yap and Zhang [9] proved that a planar graph is equitably m-
colorable for any m≥ ∆(G)≥ 13, and they also proved in [8] that Conjecture 1 is true for
outerplanar graphs. In this paper, we prove the following theorem:

Theorem 1. Let G be a planar graph with ∆(G)≥ 7 and without 4-cycles. Then G is
equitably m-colorable for any m≥ ∆(G).

2 Some useful Lemmas
Let us introduce some notations and definitions, they are similar to that of [6]. Let

G be a graph with mt vertices. A nearly equitable m-coloring of G is a proper coloring
f , whose color classes all have size t except for one small class V− = V−( f ) with size
t−1 and one large class V+ =V+( f ) with size t +1. Given such a coloring f , define an
auxiliary digraph H = H ( f ) as follows. The vertices of H are the color classes of f . A
directed edge UW belongs to E(H ) iff some vertex y ∈U has no neighbors in W . In this
case we say that y is movable to W . Call W ∈V (H ) accessible, if V− is reachable from
W in H . So V− is trivially accessible. Let A =A ( f ) denote the family of accessible
classes, A :=

⋃
A , r := |A | and B :=V (G)\A.

Lemma 1. If G has a nearly equitable coloring, whose large class V+ is accessible,
then it has an equitable coloring with the same number of colors.

Suppose V+ ⊆ B. Then |A|= rt−1, |B|= (m− r)t +1 and dA(y)≥ r for each vertex
y ∈ B. For an accessible class U ∈ A , define SU ( f ) to be the set of classes X ∈ A
such that there is an XV−-path in H −U and TU := TU ( f ) := A \(SU ( f )+U). Call
U terminal, if SU ( f ) = A −U , otherwise U is non− terminal. Trivially, V− is non-
terminal. Choose a non-terminal U such that |TU | is minimum and set A ′ := TU . Let
A′ :=

⋃
A ′( f ) :=

⋃
A ′.

Lemma 2. Every class in A ′ is terminal.

The proof of Lemma 1 and Lemma 2 can be found in [6].

An edge zy is solo if z ∈W ∈ A ′, y ∈ B and NW (y) = {z}. The ends of solo edges
are called solo vertices and vertices linked by solo edges are called special neighbors of
each other. Let Sz denote the set of special neighbors of z.

Lemma 3. Let G be a planar graph of order mt and without 4-cycles. Then e(G) ≤
15
7 mt− 30

7 and δ (G)≤ 4.
Proof. We need only to consider the case that G is connected. Since G contains no 4-

cycles, it doesn’t contain adjacent 3-cycles, we have 3r3 ≤ e(G). Thus 5Φ−2r3 = 5(r3 +

r5 + · · ·+ rn)− 2r3 ≤ 3r3 + 5r5 + · · ·+ nrn = ∑ f∈F d( f ) = 2e(G). We have Φ ≤ 8e(G)
15 .

By Euler’s formula |G| − e(G)+Φ = 2, we have e(G) ≤ 15
7 (|G| − 2) = 15

7 mt − 30
7 . In
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[2], Borodin proved that δ (G) ≤ 4 for each plane graph without adjacent triangles. It
completes the proof of Lemma 3.

Lemma 4. Every planar graph without 4-cycles is 4-choosable.

The proof of Lemma 4 can be found in [7].

Lemma 5. Let m and s be positive integers. Suppose G is a planar graph with ∆(G)≤
m and without 4-cycles. If G has an independent s-set V ′ and there exists C ⊆ V (G)\V ′
such that |C| > s(m+2)

2 and e(v,V ′) ≥ 1 for any v ∈ C, then C contains two nonadjacent
vertices α and β which are adjacent to exactly one and the same vertex γ ∈V ′.

Proof. Let C1 ⊆C be such that each v∈C1 is adjacent to exactly one vertex of V ′. Let
|C1|= r. Then r+2(|C|− r)≤ e(C,V ′)≤ms, from which it follows that r≥ 2|C|−ms >
2s. Hence V ′ contains at least one vertex γ which is adjacent to at least three vertices of
C1. As G is a planar graph without 4-cycles, C1 contains two nonadjacent vertices α and
β which are adjacent to γ .

Lemma 6. Let G be a planar graph with maximum degree ∆(G) ≤ m and without
4-cycles, |G| = mt. Let f be a nearly equitable coloring of G and V+( f ) ⊆ B. If |B| =
(m− r)t +1 > mt

2 and r ≥ 3, then there exists a solo vertex z ∈W ∈A ′ such that either z
is movable to a class in A \{W} or z has two nonadjacent neighbors in B.

Proof. Suppose not. Let S be the set of solo vertices in W . As G is a planar graph
without 4-cycles, we can get |Sz| ≤ 2 for any z ∈ S. Then there exists at most 2|S| vertices
in B which has exactly one neighbor in W , thus e(W,B) ≥ 2|S|+ 2(|B|− 2|S|) = 2|B|−
2|S|. And since no vertex in S is movable to a class in A \{W}, each z ∈ S satisfies
dA(z) ≥ r− 1, we can get dB(z) ≤ m− (r− 1). Thus 2|B| − 2|S| ≤ e(W,B) ≤ [m− (r−
1)]|S|+m(t−|S|). It follows that 2|B|−mt +(r−3)|S| ≤ 0, a contradiction.

Lemma 7. Let m and t be positive integers. Let H be a graph of order mt with vertex
chromatic number χ ≤ m. If e(H)≤ (m−1)t, then H is equitably m-colorable.

The Proof of Lemma 7 can be found in [9].

Lemma 8. Let m ≥ 5 and t ≥ 2 be integers. Let G be a planar graph with maximum
degree ∆(G) ≤ m and without 4-cycles, |G| = mt. If e(G) ≤ ( 1

7 m+ 30
7 )t +m−3, then G

is equitably m-colorable.
Proof. Suppose for a contradiction, that G is an edge-minimal counterexample to the

lemma. As G is planar and without 4-cycles, by Lemma 3, G has an edge xy ∈ E(G)
where d(x) ≤ 4. By minimality, G− xy has an equitable m-coloring φ which has color
classes V1, V2, · · · , Vm, where |Vi|= t for i= 1,2, · · · ,m. Clearly we only need to consider
the case that x,y are in the same color class. Without loss of generality, assume x,y ∈ V1
and N(x) ⊆ V1 ∪V2 ∪ ·· · ∪V4. Let V− = V1\{x}, V+ = Vm ∪{x}. Thus we get a nearly
equitable m-coloring f of G. Clearly V+ ⊆ B by Lemma 1. If there exists Vj for some
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5 ≤ j < m, such that Vj is accessible, let P be a path in H from Vj to V−. Since V+

contains a vertex x that has no neighbors in Vj, P1 = P ∪{V+Vj} is a path from V+ to
V− in H . Thus G has an equitable m-coloring by Lemma 1, a contradiction. So we can
get r = |A ( f )| ≤ 4,

⋃m
j=5 Vj ∪{x} ⊆ B( f ).

Case 1. r = 4. Then |A| = 4t− 1, |B| = (m− 4)t + 1 and e(A,B) ≥ 4[(m− 4)t + 1].
Let A+ = A∪{x}.

If e(G[A])≤ 3t−4, then e(G[A+])≤ 3t. By Lemma 7, G[A+] is equitably 4-colorable.
Consequently G is equitably m-colorable.

Otherwise, e(G[A])> 3t−4. Then e(G)≥ e(A,B)+e(G[A])> 4[(m−4)t+1]+(3t−
4) = (4m−13)t ≥ e(G), a contradiction.

Case 2. r = 3 or r = 2. In this case, e(A,B) ≥ min{3(m− 3)t + 3,2(m− 2)t + 2} >
e(G), a contradiction.

Case 3. r = 1. Then e(A,B) ≥ (m−1)t +1 and |B| = (m−1)t +1 > (t−1)(m+2)
2 . By

Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly
one and the same vertex γ ∈ V−. Let G1 = G[B\{α,β}∪ {γ}] and G2 = G[V−\{γ}∪
{α,β}]. Then |G1| = (m− 1)t, ∆(G1) ≤ m− 1 and e(G1) ≤ e(G[B])+m− 2 ≤ ( 1

7 m+
30
7 )t +m− 3− [(m− 1)t + 1] +m− 2 = ( 37

7 − 6
7 m)t + 2m− 6 ≤ (m− 2)t. Thus G1 is

equitably (m−1)-colorable by Lemma 7. Consequently G is equitably m-colorable.

Lemma 9. Let m ≥ 6 and t ≥ m− 4 be integers. Let G be a planar graph with
maximum degree ∆(G)≤m and without 4-cycles, |G|= mt. If e(G)≤ ( 8

7 m+ 15
7 )t +m−

44
7 , then G is equitably m-colorable.

Proof. Suppose for a contradiction, that G is an edge-minimal counterexample to the
lemma. Similar to the proof of Lemma 8, we can get a nearly equitable m-coloring f of
G such that r = |A ( f )| ≤ 4,

⋃m
j=5 Vj ∪{x} ⊆ B( f ).

Case 1. r = 4. Then |A| = 4t− 1, |B| = (m− 4)t + 1 and e(A,B) ≥ 4[(m− 4)t + 1].
Let A+ = A∪{x}.

If e(G[A])≤ 3t−4, then e(G[A+])≤ 3t. By Lemma 7, G[A+] is equitably 4-colorable,
Consequently G is equitably m-colorable.

Otherwise, e(G[A])> 3t−4. Then e(G)> 4[(m−4)t +1]+(3t−4) = (4m−13)t >
e(G), a contradiction.

Case 2. r = 3. In this case, e(A,B)≥ 3(m−3)t +3 > e(G), a contradiction.

Case 3. r = 2. Then e(A,B)≥ 2(m−2)t +2 and |B|= (m−2)t +1 > (t−1)(m+2)
2 . By

Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly
one and the same vertex γ ∈ V−. Let G1 = G[B\{α,β}∪{γ}] and G2 = G[(V−\{γ}∪
{α,β})∪ (A\{V−})]. Then |G1|= (m−2)t, ∆(G1)≤ m−2 and e(G1)≤ e(G[B])+m−
2 ≤ ( 8

7 m+ 15
7 )t +m− 44

7 −2[(m−2)t +1]+m−2 = ( 43
7 − 6

7 m)t +2m− 72
7 ≤ (m−3)t.

Thus G1 is equitably (m− 2)-colorable by Lemma 7. Consequently G is equitably m-
colorable.

Case 4. r = 1. Then e(A,B) ≥ (m−1)t +1 and |B| = (m−1)t +1 > (t−1)(m+2)
2 . By

Lemma 5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly
one and the same vertex γ ∈ V−. Let G1 = G[B\{α,β}∪ {γ}] and G2 = G[V−\{γ}∪
{α,β}]. Then |G1| = (m− 1)t, ∆(G1) ≤ m− 1 and e(G1) ≤ e(G[B])+m− 2 ≤ ( 8

7 m+
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15
7 )t+m− 44

7 − [(m−1)t+1]+m−2 = ( 1
7 m+ 22

7 )t+2m− 65
7 ≤ [ 1

7 (m−1)+ 30
7 ]t+(m−

1)−3. Thus G1 is equitably (m−1)-colorable by Lemma 8. Consequently G is equitably
m-colorable.

3 Proof of Theorem 1
Theorem 1. Let G be a planar graph with maximum degree ∆(G)≥ 7 and with-

out 4-cycles. Then G is equitably m-colorable for any m≥ ∆(G).
Proof. First we consider the case that |G| is divisible by m. Without loss of generality,

assume |G|= mt.
Suppose for a contradiction, that G is an edge-minimal counterexample to the The-

orem. Similar to that of Lemma 8, we can get a nearly equitable m-coloring f of G,
r = |A | ≤ 4,

⋃m
j=5 Vj ∪{x} ⊆ B.

Case 1. r = 4. In this case, |B| = (m− 4)t + 1 and e(A,B) ≥ 4[(m− 4)t + 1]. Let
A+ = A∪ x.

If e(G[A])≤ 3t−4, then e(G[A+])≤ 3t. By Lemma 7, G[A+] is equitably 4-colorable,
Consequently G is equitably m-colorable.

Otherwise, e(G[A])> 3t−4. Then e(G)> 4[(m−4)t +1]+(3t−4) = (4m−13)t >
e(G), a contradiction.

Case 2. r = 3. In this case, e(A,B)≥ 3(m−3)t +3 and |B|= (m−3)t +1 > mt
2 .

By Lemma 6, there exists a solo vertex z ∈W ∈ A ′ and a vertex y1 ∈ Sz such that
either z is movable to a class X ∈ A \{W}, or z is not movable in A and there exists
another vertex y2 ∈ Sz, which is not adjacent to y1.

Subcase 2.1. z is movable to a class X ∈ A \{W}. Let G1 = G[A∪ {y1}], G2 =
G[B\{y1}]. Since W ∈A ′( f ), there exists a path P from X to V−( f ) in H ( f )−W by
Lemma 2. Move z to X and y1 to W\{z} to obtain a nearly equitable 3-coloring ϕ of
G1 with V+(ϕ) = X ∪{z}. Let P∗ = P +V+(ϕ)−X . Then P∗ is a path from V+(ϕ)
to V−(ϕ) in H (ϕ). Thus G1 has an equitable 3-coloring ϕ ′ by Lemma 1. Moreover,
|G2| = (m−3)t and e(G2) ≤ e(G[B]) ≤ e(G)− e(A,B) ≤ 15

7 mt− 30
7 −3[(m−3)t +1] =

(9− 6
7 m)t− 51

7 ≤ (m−4)t. By Lemma 7, G2 has an equitable (m−4)-coloring g. Then
ϕ ′∪g is an equitable m-coloring of G.

Subcase 2.2. z is not movable to any class in A . Then dA(z)≥ 2. Since W ∈A ( f ),
there exists a path P from W to V−( f ) in H ( f ). Let G1 = G[A\{z}∪{y1,y2}], G2 =
G[B\{y1,y2}∪ {z}]. Move y1 and y2 to W\{z} to obtain a nearly equitable 3-coloring
ϕ of G1 with V+(ϕ) = W\{z} ∪ {y1,y2}. Let P∗ = P +V+(ϕ)−W . As z is not
movable to any class in A ( f ), we can get P∗ is a path from V+(ϕ) to V−(ϕ) in H (ϕ).
Thus G1 has an equitable 3-coloring ϕ ′ by Lemma 1. Moreover, |G2| = (m− 3)t and
e(G2) ≤ e(G[B])+ (m− 4) ≤ 15

7 mt− 30
7 − 3[(m− 3)t + 1]+ (m− 4) = (9− 6

7 m)t +m−
79
7 ≤ (m−5)t. Then G2 has an equitable (m−4)-coloring g by Lemma 7. Thus ϕ ′∪g is

an equitable m-coloring of G.
Case 3. r = 2. In this case, (m− 2)t + 1 ≤ e(V−,B) ≤ m(t− 1), and it follows that

t ≥ 4. Clearly |B|= (m−2)t +1 > (t−1)(m+2)
2 and e(v,V−)≥ 1 for any v ∈ B. By Lemma

5, there exist two nonadjacent vertices α and β in B which are adjacent to exactly one and

404 The 9th International Symposium on Operations Research and Its Applications



the same vertex γ ∈V−. Let G1 = G[B\{α,β}∪{γ}] and G2 = G[(V−\{γ}∪{α,β})∪
(A\{V−})]. Then |G1|= (m−2)t, ∆(G1)≤m−2 and e(G1)≤ e(G[B])+m−2≤ 15

7 mt−
30
7 −2[(m−2)t +1]+m−2 = ( 1

7 m+4)t +m− 58
7 = [ 1

7 (m−2)+ 30
7 ]t +(m−2)− 44

7 . By
Lemma 8, G1 is equitably (m−2)-colorable. Consequently G is equitably m-colorable.

Case 4. r = 1. In this case, (m− 1)t + 1 ≤ e(V−,B) ≤ m(t − 1), and it follows
that t ≥ m+ 1. Clearly |B| = (m− 1)t + 1 > (t−1)(m+2)

2 . By Lemma 5, there exist two
nonadjacent vertices α and β in B which are adjacent to exactly one and the same vertex
γ ∈V−. Let G1 = G[B\{α,β}∪{γ}] and G2 = G[V−\{γ}∪{α,β}]. Then |G1|= (m−
1)t, ∆(G1)≤m−1 and e(G1)≤ e(G[B])+m−2≤ 15

7 mt− 30
7 − [(m−1)t +1]+m−2 =

( 8
7 m+ 1)t +m− 51

7 = [ 8
7 (m− 1)+ 15

7 ]t +(m− 1)− 44
7 . Thus G1 is equitably (m− 1)-

colorable by Lemma 9. Consequently G is equitably m-colorable.
If |G| is not divisible by m, without loss of generality, assume that |G|= m(t +1)− j,

where 0 < j < m. Use induction on |G|. As G is planar and without 4-cycles, G has an
edge xy ∈ E(G) where d(x) ≤ 4. By the induction hypothesis, G− x has an equitable
m-coloring Φ with color classes V1, V2, · · · , Vm, where |Vi| = t or |Vi| = t + 1. Assume
N(x) ⊆ V1 ∪V2 ∪V3 ∪V4. If there exists some i ≥ 5 such that |Vi| = t, then by adding x
to Vi to obtain an equitable m-coloring. Otherwise, |Vi| = t + 1 for any i ≥ 5, we have
|G| = m(t + 1)− j, 0 < j < 4. Let G′ = G∪K j, then G′ is equitably m-colorable by the
above proof, and so is G.

Hence we complete the proof of Theorem 1.
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