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Abstract Community extraction plays an important role in network analysis. This paper discusses
communities in hypergraphs. Since hypergraphs can represent multi-relational networks, they are
important structures in many domains. In this study, the definition of communities based on the
number of adjacent links/nodes is extended to a hypergraph. Four extended models are proposed.
The adequacy of these models for hypergraph communities is investigated by using a hypergraph
obtained from joint work relationships.
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1 Introduction
Community extraction plays an important role in the analysis of networks such as the

WWW and social networks. For example, communities in a web graph may correspond to
sets of websites dealing with the related topics. Since web links are created to guide users
to the related pages, subgraphs with dense connections can be regarded as communities.
Thus, the process of finding a community is related to that of finding a subgraph so that
connections are dense within and are sparse outside.

Many researchers have given different notions of communities and have developed
various algorithms to detect communities. There are two types of community extraction
approaches: one involves finding one or more communities at a time, and the other in-
volves dividing a network into communities such that each node belongs to one of the
communities. The latter is a general approach in community extraction. However, com-
plete decomposition is not appropriate in many cases. Some objects may be classified
as outliers or as objects that are not strongly connected to any specific group. Thus, this
study focuses on the former approach. In a classical method of extracting one or more
communities, one finds subgraphs relaxing a clique condition (See, for example [6] ).
Flake, Lawrence and Giles [4] defined a community by using the number of adjacent
links and proposed a flow-based algorithm.

Recently, hypergraphs have gained considerable attention, since they can represent
complex situations for a network which has some attributions of elements. Community
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extraction in hypergraphs has also been widely researched. Brinkmeier, Recknagel and
Werner [3] defined a community by a minimum cut in a hypergraph, and extracted com-
munities that included specified elements. Zhang, Takahashi and Shigeno [7] extended
a maximum density subgraph to a hypergraph, and proposed an efficient extraction algo-
rithm. Barber [2] proposed a community extraction method using modularity in a bipartite
graph representing a hypergraph. His concept has been used to derive several variants for
extraction algorithms.

In this study, we extend the definition of a community provided by Flake, Lawrence
and Giles [4] to hypergraphs, and propose community extraction methods for hyper-
graphs. We also design four extended models. The extended community for each model
can be identified efficiently by a flow-based algorithm. We compare the four proposed
models by applying our method to real-world problems. In this study, we assume that an
entire hypergraph is known and static.

2 Preliminaries
Let G = (N,E) be an undirected graph with node set N and edge set E. For a node

v ∈ N and a node set C⊆ N, let δG(v,C) = {(v,w) ∈ E | w ∈C}. We call the cardinality of
δG(v,C) the adjacent number of v in C. In terms of undirected graphs, Flake, Lawrence
and Giles [4] defined communities characterized of having more relations inside the com-
munity than outside.

Definition 1.
A nonempty proper subset of nodes C(⊂ N) is a community, if each node v in C satisfies
|δG(v,C)| ≥ |δG(v,N \C)|.

Hereafter, the above community is referred to as an adjacent number community, or an
adj-community, for short. For nodes s and t, an s-t cut is a partition of the node set
(X ,N \X) such that s∈ X and t ∈N \X . A minimum s-t cut is an s-t cut that minimizes the
number of edges connecting X and N \X , i.e., minimizes |{(u,v) ∈ E | u ∈ X ,v ∈ N \X}|.
When graph G has an edge capacity c : E → R, a minimum s-t cut implies an s-t cut
(X ,N \X) that minimizes the cut capacity c(X ,N \X) = ∑{c(u,v) | (u,v) ∈ E,u ∈ X ,v ∈
N \X}. When a directed graph is being considered, c(X ,N \X) is defined by the sum
of capacities of edges leaving from X and entering to N \X . Many efficient polynomial-
time algorithms have been proposed for finding the minimum s-t cuts [1]. The following
property, which is a slight variation of Theorem 1 in [4], shows that an adj-community
can be found efficiently when using algorithms for an undirected graph with unit capacity.

Theorem 1.
For specified nodes s and t, let (X ,N \X) be a minimum s-t cut in G. If

|δG(s,X)| ≥ |δG(s,N \X)|, (1)

then X is an adj-community.

When the entire graph can be used for the calculation, adj-communities are found
by repeating the following steps: (Step 1) In an appropriate manner, choose nodes s
and t; (Step 2) Find a minimum s-t cut (X ,N \X); (Step 3) Check whether X satisfies
the condition (1); If yes, return X as an adj-community. Flake, Lawrence and Giles [4]
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proposed a method for choosing s and t for web graphs on the basis of the web properties.
As pointed out by [5], note that their method cannot find all adj-communities that include
s and exclude t. Moreover, even if such communities exist, the method may find no
communities. However, their method can be extended to one that operates over a graph
induced by a crawl of fixed depth. The effectiveness of the extended method for a real-
world case was reported in [4]. In addition, several variations of the adj-community have
been discussed [5]. Since an adj-community is a basic idea for community extraction, the
concept is worth focusing on. In this study, we extend this adj-community to hypergraphs.

At the last of this section, we introduce notations of hypergraphs. Given a finite set N,
let P∗(N) = {X ⊆ N | |X | ≥ 2} be the set of all subsets whose cardinalities are at least
two. A hypergraph Γ = (N,H ) consists of a finite set N of nodes and finite multi-set
H of sets in P∗(N). Elements of H are referred to as hyperedges. A hypergraph is an
extension of a graph in the sense that each hyperedge can connect more than two nodes.
For each node v ∈ N of hypergraph Γ, we define δ (v) = {h ∈H | v ∈ h}.

3 Communities in hypergraphs
This section generalizes adj-communities to a hypergraph Γ= (N,H ). To do this, we

generalize the notion of the adjacent number |δG(v,C)| of v ∈ N in C ⊆ N. Since δG(v,C)
is the set of edges, we introduce a set of adjacent hyperedges δΓ(v,C) = {h ∈ δ (v) | h ⊆
C∪{v}} for v∈N and C⊆N. When Γ is a graph G, i.e., the cardinality of each hyperedge
is exactly two, it is clear that δG(v,C) = δΓ(v,C) for any v ∈N and C⊆N. We then define
communities based on the number of adjacent hyperedges as follows.

Definition 2.
In a hypergraph Γ = (N,H ), a nonempty proper subset of nodes C(⊂N) is a community,
if each node v ∈C satisfies |δΓ(v,C)| ≥ |δΓ(v,N \C)|.

Since the definition is based on the number of hyperedges, we call this community a
hyperedge-based-community, or an h-community for short. We make a directed graph
from Γ, in order to extract h-communities by using minimum s-t cut algorithms such as
those in Flake, Lawrence and Giles’s method [4]. Let H + and H − be two copies of H .
Denote by h+ (resp. h−) the copy of a hyperedge h(∈H ) belonging to H + (resp. H −)
is. We then construct a directed graph D̃Γ = (Ñ, Ã∪ Ã±), where Ñ = N ∪H + ∪H −,
Ã = {(v,h+)(h−,v) | h ∈ δ (v),v ∈ N}, and Ã± = {(h+,h−)(h−,h+) | h ∈H }. An edge
capacity c̃ : Ã∪ Ã±→ R is defined as

c̃(a) =
{

∞ (a ∈ Ã),
1 (a ∈ Ã±).

Theorem 2.
For a pair of s, t ∈N, suppose that (Y, Ñ\Y ) is a minimum s-t cut in (D̃Γ, c̃). Let C =Y ∩N.
If |δΓ(s,C)| ≥ |δΓ(s,N \C)|, then C is an h-community.

Proof. Note that c̃(Y, Ñ \Y ) < ∞ since there exists an s-t cut with finite capacity, for
example, c̃(N ∪H +,H −) = |H |. Suppose v̂ ∈ C. If v̂ ∈ h(∈H ) and h+ 6∈ Y , then
the cut capacity c̃(Y, Ñ \Y )≥ c̃(v,h+) = ∞. Thus, we obtain {h+ | h ∈ δ (v̂)} ⊆ Y , which
implies that both of sets {h+ | h ∈ δΓ(v̂,C)} and {h+ | δΓ(v̂,N \C)} are contained in
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Y . Similarly, due to the edge set Ã, if h− belongs to Y , then v contained in h is in C.
Thus, {h− | h ∈ δΓ(v̂,N \C)} ⊆ Ñ \Y holds. In addition, if h− 6∈ Y for h ∈ δΓ(v̂,C), we
obtain c̃(Y, Ñ \Y ) = c̃(Y \{h−}, Ñ \ (Y \{h−}))+1, which contradicts the minimality of
c̃(Y, Ñ \Y ). Hence, we have {h− | h ∈ δΓ(v̂,C)} ⊆ Y .

Assume that there exists v ∈C \ {s} with |δΓ(v,C)| < |δΓ(v,N \C)|. By setting Y ′ =
Y \ ({v}∪{h− | h ∈ δΓ(v,C)}∪{h+ | h ∈ δΓ(v,N \C)}), we have

c̃(Y ′, Ñ \Y ′) = c̃(Y, Ñ \Y )+ |δΓ(v,C)|− |δΓ(v,N \C)|< c̃(Y, Ñ \Y ),

which contradicts the minimality of c̃(Y, Ñ \Y ) since Y ′ is an s-t cut. �
Thus, we can find an h-community by finding a minimum s-t cut in (D̃Γ, c̃) similar to the
manner in which adj-communities are found in a graph.

The definition of h-communities appears to be a natural extension of adj-communities,
since both definitions are based on the number of adjacent hyperedges or edges. However,
h-communities do not consider all of the hyperedges that contain a node v in a community.
Therefore, for a node subset C, we classify all hyperedges by their contribution to relations
in C. Let H (C)> = {h∈H | |h∩C|> |h\C|} and H (C)≤= {h∈H | |h∩C| ≤ |h\C|}.
When Γ is a graph G, it is obvious that δG(v,C) = δ (v)∩H (C)> and δG(v,N \C) =
δ (v)∩H (C)≤ for any C⊆ N and v ∈C. We then introduce a definition which uses all of
the hyperedges in δ (v) for v ∈C.

Definition 3.
In a hypergraph Γ = (N,H ), a nonempty proper subset of nodes C(⊂N) is a community,
if each node v ∈C satisfies |δ (v)∩H (C)>| ≥ |δ (v)∩H (C)≤|.
We call this community a classified-hyperedges community, or a c-community for short.
Let G̃Γ = (N ∪H , Ẽ) be a bipartite graph, where Ẽ = {(v,h) | h ∈ δ (v),v ∈ N}. This
bipartite graph is widely used to represent Γ.

Theorem 3.
For a pair of s, t ∈ N, suppose that (Y,(N ∪H ) \Y ) is a minimum s-t cut in G̃Γ. Let
C = Y ∩N. If |δ (s)∩H (C)>| ≥ |δ (s)∩H (C)≤|, then C is a c-community.

Proof. Let H (C)= = {h ∈H | |h∩C|= |h\C|}, and ∆(Y,(N∪H )\Y ) be the number
of edges between Y and (N ∪H ) \Y . From the minimality of ∆(Y,(N ∪H ) \Y ), a
hyperedge in H ∩Y belongs to H (C)> or H (C)=. Similarly, a hyperedge in H \Y
belongs to H (C)≤.

Suppose that there exists v ∈ C \ {s} such that |δ (v)∩H (C)>| < |δ (v)∩H (C)≤|.
By setting Y ′ = Y \ ({v}∪ (δ (v)∩H (C)=), we have

∆(Y ′,(N∪H )\Y ′)

= ∆(Y,(N∪H )\Y )+ |δ (v)∩H (C)>|− |δ (v)\Y |− |δ (v)∩H (C)=∩Y |
= ∆(Y,(N∪H )\Y )+ |δ (v)∩H (C)>|− |δ (v)∩H (C)≤|< ∆(Y,(N∪H )\Y ),

which contradicts the minimality of ∆(Y,(N∪H )\Y ), since Y ′ is an s-t cut. �
Thus, we can also find a c-community by using a minimum s-t cut algorithm for G̃Γ.

We now return to the notion of the adjacent number in a graph. We can interpret the
adjacent number as the total number of nodes including repeated memberships, each of
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which belongs to C and is jointed with v by an edge. In other words, in a graph, the adja-
cent number |δG(v,C)| is equivalent to the cardinality of multiset {w ∈ N | (v,w) ∈ E,w ∈
C}. From this point of view, we extend the notion of adjacent numbers to the cardinal-
ity of a multiset of nodes, each of which belongs to C and is contained in a hyperedge
together with v. This multiset is denoted by d̂(v,C) = {w ∈C | h ∈ δ (v),w ∈ h}.
Definition 4.
In a hypergraph Γ = (N,H ), a nonempty proper subset of nodes C(⊂N) is a community,
if each node v ∈C satisfies |d̂(v,C)| ≥ |d̂(v,N \C)|.
We call this community a node-based-community, or an n-community for short. It is clear
that |d̂(v,C)|= ∑h∈δ (v) |h∩ (C\{v})| holds. Hence, we can observe that an n-community
corresponds to an adj-community in the undirected graph constructed by representing
each hyperedge in Γ by a clique. As described in the next section, n-communities do not
seem to be so appropriate. One reason may be that n-communities ignore connections in
one hyperedge.

We now give a definition combining the above three types of communities. For the
strength of relations of C(⊆ N) and v ∈C, we define a multiset as a collection of nodes,
excluding v, that constitutes hyperedges covered by C. In other words, we consider a
multiset d(v,C) as defined by a collection of node sets h \ {v}, where h ∈ δΓ(v,C). In
addition, to measure the relations between v ∈ C and N \C, we count the number of
hyperedges not covered by C. Thus, we evaluate the relationships within and without a
community by different measurements.

Definition 5.
In a hypergraph Γ = (N,H ), a nonempty proper subset of nodes C(⊂N) is a community,
if each node v ∈C satisfies |d(v,C)| ≥ |{h ∈ δ (v) | h 6⊆C}|.
We call this community a mixed-criterion-community, or an mc-community for short.
When Γ is a graph, an mc-community coincides with an adj-community. This mc-
community can be extracted by a minimum s-t cut algorithm for a directed bipartite graph
DΓ = (N∪H ,AF ∪AB) with an edge capacity c : AF ∪AB→R, where AF = {(v,h) | h ∈
δ (v),v ∈ N}, AB = {(h,v) | h ∈ δ (v),v ∈ N}, and

c(e) =
{

1 (e ∈ AF),
∞ (e ∈ AB).

Theorem 4.
For a pair of s, t ∈ N, suppose that (Y,(N ∪H )\Y ) is a minimum s-t cut in (DΓ,c). Let
C = Y ∩N. If |d(s,C)| ≥ |{h ∈ δ (s) | h 6⊆C}|, then C is an mc-community.

Proof. From the definition of the capacity, a hyperedge h covered by C, if and only if
h ∈ Y . If there exists a node v ∈C \{s} with |d(v,C)|< |{h ∈ δ (v) | h 6⊆C}|, we obtain,
for an s-t cut Y ′ = Y \ ({v}∪δΓ(v,C)),

c(Y ′,(N∪H )\Y ′) = c(Y,(N∪H )\Y )+ ∑
h∈δΓ(v,C)

|h\{v}|− |{h ∈ δ (v) | h 6⊆C}|

< c(Y,(N∪H )\Y ),

since ∑h∈δΓ(v,C) |h\{v}|= |d(v,C)|. This inequality contradicts the minimality of c(Y,(N∪
H ). �
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4 Experimental results
To investigate the adequacy of our communities, we performed experiments on our

community extraction in a hypergraph representing joint work relationships. For a node
set of a hypergraph, we collected authors of articles that appear in a specific journal. Au-
thors for whom there were no joint works in the journal, were excluded. Each hyperedge
was given by a set of co-authors for an article, while an article written by a single author
was ignored.

Our experiments found a smaller community that contained a specified author under
a required condition. The following is the procedure for finding an h-community.

Step 1 Set a specified author as s.
Step 2 For each node v ∈ N \ {s}, find a minimum s-v cut (Yv, Ñ \Yv) in (D̃Γ, c̃). Let

(Y, Ñ \Y ) be a cut attaining the minimum capacity among the obtained cuts satis-
fying the condition |δΓ(s,Yv∩N)| ≥ |δΓ(s,N \Yv)|. (If there is no cut satisfying the
condition, the procedure fails.)

Step 3 Choose a node v attaining min{c̃(Yv, Ñ \Yv) | v ∈ (Y ∩N)\{s}}.
Step 4 If C = (Y ∩Yv)∩N satisfies the condition |δΓ(s,C)| ≥ |δΓ(s,N \C)|, then update

(Y, Ñ \Y ) by (Y ∩Yv, Ñ \ (Y ∩Yv)) and go to Step 3. Otherwise, return Y ∩N as an
h-community.

We can find a c-community, n-community, and mc-community in a similar manner.
In the first experiment, we obtained a hypergraph from the Journal of the Operations

Research Society of Japan, using vols. 38–56 (1995–2009). The obtained hypergraph had
570 nodes and 344 hyperedges. We selected two authors, Author1 and Author2, as the
central researchers. Author1 had nine hyperedges, and Author2 had six hyperedges in this
hypergraph. For Author1, the obtained h-, c-, n-, and mc-communities were composed
of 18, 25, 22 and 29 authors, respectively. Figure 1 (a) shows the number of authors
belonging to individual relations among the obtained communities as a Venn diagram.
Also, Figure 1 (b) shows the result for Author2. We also show the result for Author2 on a
subgraph of G̃Γ = (N∪H , Ẽ) in Figure 2.

(a) for Author1 (b) for Author2

Figure 1: The numbers of authors belonging to the obtained communities

In the second experiment, we used articles from Mathematical Programming Jour-
nal, Series A and Series B from vol.43 No.1(1989) to vol.115, No.10 (2008) in order
to construct a hypergraph, which contained 1800 nodes and 1215 hyperedges. We se-
lected the same author Author2 in the first experience. Author2 had 17 hyperedges in
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Figure 2: The result for Author2 in the first experiment on a bipartite subgraph of G̃Γ =
(N ∪H , Ẽ). Circles and rectangles represent authors and articles, respectively. Signs of
"h-", "c-", "n-" and "mc-" beside each author node express types of the communities in
which the author belongs to.

this hypergraph. We also selected Author3, who had 17 hyperedges. Figure 3 shows
the numbers of authors belonging to individual relations among the obtained h-, c-, n-,
and mc-communities for Author2. We also show the result for Author2 on a subgraph of
G̃Γ = (N∪H , Ẽ) in Figure 4.

(a) for Author2 (b) for Author3

Figure 3: The numbers of authors belonging to the obtained communities

In our experiments, the obtained communities could extract groups of the authors car-
rying out active research in the fields of authors selected as a source. C-communities tend
to be influenced by large-size hyperedges. Indeed, for Author1, a hyperedge consisting
of six authors was related. As a result, the obtained c-community contained these six
authors. The result for Authors3 was similar. In contrast, for Author2, the size of each re-
lated hyperedge was less than four, and the obtained c-communities were included in other
communities. In our experiments, h-communities tended to be similar to c-communities.
The result shown in Figure 2 illustrates that we could not obtain the minimal communities.

5 Conclusion
We proposed four definitions for hypergraph communities on the basis of adjacent

numbers, not only an extension to a bipartite graph that represents a hypergraph. We
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Author2

Figure 4: The result for Author2 in the second experiment on a bipartite subgraph of
G̃Γ = (N ∪H , Ẽ). Each circle and triangle shows an author and a rectangle shows an
article. All authors in this figure are in h-community. Authors that are contained in all
obtained communities are illustrated by triangles.

also present the experimental results of extracting these communities in hypergraphs that
represent joint work relationships. The experimental results suggest that the appropriate
community must be chosen on the basis of the hypergraph characteristics, especially, the
size of the hyperedges.
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