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Abstract We consider callable Russian options with the finite maturity. Callable Russian option
is a contract that the seller and the buyer have the rights to cancel and to exercise it at any time, re-
spectively. We discuss the pricing model of callable Russian options when the stock pays dividends
continuously. We show that the pricing model can be formulated as a coupled optimal stopping
problem which is analyzed as Dynkin game.
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1 Introduction
Russian option was introduced by Shepp and Shiryaev [8], [9] and is one of perpet-

ual American lookback options. Russian option with the finite maturity was studied by
Duistermaat, Kyprianou and van Schaikb [1], Ekström [2] and Peskir [7].

Russian option is the contract that only the buyer has the right to exercise it. On
the other hand, callable Russian option is the contract that the seller and the buyer have
both the rights to cancel and to exercise it at any time, respectively. This option value
is represented as coupled optimal stopping problem for the seller and the buyer. See
Cvitanic and Karatzas [3] and Kifer [4]. In the case where there is no dividend and the
dividend is positive, Kyprianou [6] and Suzuki and Sawaki [10] derived the value function
and its optimal boundaries, respectively. Moreover, Kunita and Seko [5] studied the value
function of the game call options and their optimal regions.

In this paper, we study the value function of callable Russian options and their optimal
regions. The paper is organized as follows. In Section 2 we introduce a pricing model of
callable Russian options with the finite maturity by means of a coupled optimal stopping
problem given by Kifer [4]. Section 3 gives the main theorem.

2 Model
We consider the Black-Scholes model. Let Bt be the riskless asset price at time t

defined by Bt = ert , where r is a positive constant. Let St be the risky asset price at time t
determined by

dSt = (r−d)Stdt +κStdWt , S0 ∈ R+, (1)
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where d and κ are nonnegative and positive constants, respectively, d is called dividend
rate and W̃t is a standard Brownian motion on a probability space (Ω,F ,P).

We define another probability measure P̃ by

dP̃
dP

= exp
(

κW̃t −
1
2

κ2t
)
.

Then, W̃t ≡Wt −κt is standard Brownian motion with respect to P̃ and St is represented
by

St = S0 exp
{(

r−d +
1
2

κ2
)

t +κW̃t

}
.

We set
Ψt(x)≡max(S0x, sup

0≤u≤t
Su)/St , x≥ 1.

Let σ be a cancel time for the seller and τ be an exercise time for the buyer. Then the
value function V (x, t) is defined by

V (x,s) = inf
σ∈Ts,T

sup
τ∈Ts,T

Js(σ ,τ,x), (2)

where

Js(σ ,τ,x) = Ẽ[e−α(σ∧τ−s){(Ψσ (x)+δ )1{σ<τ}+Ψτ(x)1{τ≤σ}}], α > 0

and Ts,T is the set of all stopping times in the interval [s,T ]. The infimum and supremum
are taken over all stopping times σ and τ , respectively. The value function V (x,s) satisfies
the inequalities

x≤V (x,s)≤ x+δ .

We define the sets A, B and C by

A = {(x,s)× [0,T ) ∈ R+;V (x,s) = x+δ},
B = {(x,s)× [0,T ) ∈ R+;V (x,s) = x}.
C = {(x,s)× [0,T ) ∈ R+;x <V (x,s)< x+δ}.

These sets are the subsets of real positive numbers. The set A and B are called the seller’s
cancellation region and the buyer’s exercise region, respectively.

Let σ x
A and τx

B be the first hitting times of the process Ψt(x) to the set A and B, respec-
tively, i.e.,

σ x
A = inf{t > 0 | Ψt(x) ∈ A}∧T

τx
B = inf{t > 0 | Ψt(x) ∈ B}∧T.

For any x > 0, σ̂ x
s ≡ σ x

A and τ̂x
s ≡ τx

B attain the infimum and the supremum. Therefore, we
have

V (x,s) = Js(σ̂ x
s , τ̂

x
s ,x).

When the sets A and B are empty, we understand that σ̂ x
s = T and τ̂x

s = T .
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3 Main Theorem
In this section, we give the main theorem. In order to prove it, we need the following

lemmas.

Lemma 1.
The value function is nondecreasing in x for any s. and is Lipschitz continuous in x for
any s. And it holds

0≤ ∂V (x,s)
∂x

≤ 1. (3)

Proof. Replacing the optimal stopping times σ̂ x
s and τ̂y

s from the nonoptimal stopping
times σ̂ y

s and τ̂x
s , we have

V (y,s) ≥ Js(σ̂ y
s , τ̂

x
s ,y)

V (x,s) ≤ Js(σ̂ y
s , τ̂

x
s ,x),

respectively. Note that z+1 − z+2 ≤ (z1− z2)
+. For any x > y, we have

0≤V (x,s)−V (y,s) ≤ Js(σ̂ y
s , τ̂

x
s ,x)− Js(σ̂ y

s , τ̂
x
s ,y)

= Ê[e−α(σ̂ y
s ∧τ̂x

s )(Ψσ̂ y
s ∧τ̂x

s
(x)−Ψσ̂y

s ∧τ̂x
s
(y))]

= Ê[e−α(σ̂ y
s ∧τ̂x

s )H−1(s, σ̂ y
s ∧ τ̂x

s )((x− supH(s,u))+

−(y− supH(s,u)+)]

≤ (x− y)Ê[e−α(σ̂y
s ∧τ̂x

s )H−1(s, σ̂ y∧ τ̂x)],

where

H(s, t) = exp
{(

r−d +
1
2

κ2
)
(t− s)+κ(W̃t −W̃s)

}
.

Since the above expectation is less than 1, we have

0≤V (x,s)−V (y,s)≤ x− y.

This means that V (x,s) is Lipschitz continuous in x and it holds (3).

Lemma 2.
Let V ∗(x,s) be the value function of Russian option with the finite maturity and let δ ∗ =
V ∗(1,s)− 1. If δ > δ ∗, the seller never cancels. Therefore callable Russian options are
reduced to Russian options with the finite maturity.

Proof. We set U(x) = V ∗(x,s)− x− δ . h′(x) = V ∗′(x,s)− 1 < 0. Because we know
h(1) = V ∗(1,s)− 1− δ = δ ∗− δ < 0 by the condition δ ≥ δ ∗, we have h(x) < 0, i.e.,
V ∗(x,s)< x+δ holds. By using the relation V (x,s)≤V ∗(x,s) we obtain V (x,s)< x+δ ,
i.e., it is optimal for the seller not to cancel. Therefore the seller never cancels the contract
for δ ≥ δ ∗.

Remark 3.
Since Ψt(x)≥Ψ0(x) = x≥ 1, it follows that the seller’s optimal cancellation region A is
a point {1}.
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Lemma 4.
The value function V (x,s) is convex in x.

Proof. The function V satisfies

1
2

κ2x2 ∂ 2V
∂x2 =−∂V

∂ s
− (r−d)x

∂V
∂x

+αV.

If r ≤ d, we get ∂ 2V
∂x2 > 0. Next assume that r > d. We consider function Ṽ (x) = V (−x)

for x < 0. Then,

1
2

κ2x2 ∂ 2Ṽ
∂x2 − (r−d)x

∂Ṽ
∂x
−αṼ =

1
2

κ2x2 ∂ 2V
∂x2 +(r−d)x

∂V
∂x
−αV = 0.

Since we find that ∂ 2Ṽ
∂x2 > 0 from the above equation, Ṽ is a convex function. It follows

from this fact that V is a convex function.

Lemma 5.
Suppose d = 0. The the first derivative ∂V

∂x (x,s) is strictly increasing.

From the above lemmas, we have the following theorems.

Theorem 6.
Let A and B be the seller’s cancellation region and the buyer’s exercise region, respec-
tively.

1. If δ < δ ∗, the seller’s cancellation region is A = {1}.
2. (a) If d = 0, the buyer’s exercise region is empty, i.e., the buyer never exercises.

(b) Suppose d > 0. Then the buyer’s exercise region is

B = {x;b(s)≤ x < ∞},

where (b(s),s ∈ [0,T )) is a nonincreasing function.

Theorem 7.
Let V (x,s) be the value function of callable Russian option with the finite maturity defined
by (2). Then we have the following.

1. The function V (x,s) is convex with respect to x for any s and Lipschitz continuous
with respect to x for any s.

2. (a) Suppose d = 0. If δ ≥ δ ∗, the value function V (x,s) =VE(x,s).
When δ < δ ∗, we get V (x,s) < VE(x,s), where VE(x,s) is the value function
of the European call option with the exercise price K > 0 and is given by

VE(x,s) = Ẽ[e−r(T−s)(St −K)+ | S0 = x].

(b) Suppose d > 0. If δ ≥ δ ∗, we have V (x,s) = V ∗(x,s). When δ < δ ∗, we get
V (x,s)<V ∗(x,s).

3. The first derivative ∂V
∂x (x,s) is increasing and it satisfies

∂V
∂x

(b(s)−,s) = ∂V
∂x

(b(s)+,s) = 1.
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