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Abstract In this paper, non-monotone line search procedure is studied, which is combined with
the non-quasi-Newton family. Under the uniformly convexity assumption on objective function,
the global and superlinear convergence of the non-quasi-Newton family with the proposed non-
monotone line search is proved under suitable conditions.

Keywords Quasi-Newton method; Broyden class; non-quasi-Newton; non-monotone line search;
global convergence; unconstrained optimization

1 Introduction
Consider the following nonlinear programming problem

min f (x), (1)

where f : Rn→R1, f ∈C2. General line search methods for solving (1) have the following
form

xk+1 = xk +λkdk, k = 0,1,2, · · · .
where x0 is any given starting point, λk is a stepsize, dk is a search direction. It is known
that the quasi-Newton methods are efficient iterative methods. Many papers were de-
voted to investigating the properties of the Broyden class algorithms[1,2,3,4,5]. Meanwhile,
the study on non-quasi-Newton method, a method including function information which
does not satisfy the quasi-Newton equation and has merits comparing to Broyden’s class
in some fields, has also made good progress. In 1991, Yuan Yaxiang[6] proposed a mod-
ified BFGS algorithm. In 1995, Yuan Yaxiang and Byrd[7] gave a non-quasi-Newton
class. In 1997 and 2000, Chen Lanping and Jiao Baocong[8,9] extended a new non-quasi-
Newton family, they just gave global convergence with Wolfe-type line search. In 2006,
Liu Hongwei[10] inroduce a new update formula for non-quasi-Newton’s family and prove
that the algorithm with the update formula by Wolfe-type and Armijo-type line search
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converges globally and Q-superlinearly if the function to be minimized has Lipschitz con-
tinuous gradient. The purpose of this paper is to study this problem further. The search
direction of the non-quasi-Newton methods is determined as follows:

dk =−Hkgk , gk = ∇ f (xk),

where H0 is any given n×n symmetric positive definite matrix, Hk = B−1
k . The Hessian

approximation Bk is updating by[9]:

Bk+1(t,ϕk) = Bk−
BksksT

k Bk

sT
k Bksk

+
Qk(t)
(yT

k sk)2 ykyT
k +ϕkVkV T

k , (2)

where ϕk is a scalar, fk = f (xk), yk = gk+1−gk, sk = xk+1− xk = λkdk and

Qk(t) = tyT
k sk +2(1− t)Rk, t ∈ [0,1],

Rk
4
= fk+1− fk−gT

k sk,

Vk = (sT
k Bksk)

1
2 (

yk

yT
k sk
− Bksk

sT
k Bksk

).

The choice of the parameter t is important, since it can greatly effect the performance
of the methods. When t=1 or 0 from (2), we can obtain the Broyden algorithm or the
quasi-Newton-B algorithm[11].

It is well known that if the initial Hessian approximation B0 is symmetric and positive
definite, together with yT

k sk > 0 for all k and

ϕk > ϕ∗k ≡
1

1−µk
, µk =

sT
k BkskyT

k Hkyk

(yT
k sk)2 , (3)

then all the matrices Bk remain symmetric and positive definite[12].
Powell[13] showed that the BFGS method is globally convergent for convex functions

and Byrd, Nocedal and Yuan[14] extended his result to ϕk ∈ [0,1). For convex functions,
Zhang and Tewarson[15] proved the global convergence of Broyden’s class with ϕk ∈ [(1−
ν)ϕ∗k ,0], where ν is a number in (0,1). For uniformly convex functions, Byrd, Liu and
Nocedal[16] proved the global convergence of Broyden’s class with

ϕk ∈ [(1−ν)ϕ∗k ,1−δ ], δ ,ν ∈ (0,1) (4)

and this work is also done about non-quasi-Newton family[8,9].
It is well known that the objective functions sequences generated by the above algo-

rithms are monotonically decreasing; i.e., f (xk+1)≥ f (xk), k = 1,2, · · · . In 1986, Grippo
et al.[17] proposed a non-monotone line search technique for Newton’s method. Since
then, the non-monotone technique has been studied by many authors[18,19,20]. Theoretic
analysis and numerical results show that the algorithms with non-monotone properties
are more efficient than the algorithms with monotone properties. In this paper, under the
condition (4), we combine with non-monotone technique to propose a non-monotonical
non-quasi-Newton method based on [8] and study its convergence properties.

Algorithm 1
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Step1. Initially 0 < ε1 ≤ ε2 < 1, p < 1, λk = 1 is given. M0 is a nonnegative integer.
f1 := f (xk), f

′
1 := gT

k dk < 0. Compute the largest index m(k) such that

f (xm(k)) = max
max{k−M0,1}≤ j≤k

f (x j).

Step2. Calculate f := f (xk +λkdk) and the ratios

ρ1,k =





f (xm(k))− f (xk +λkdk)

k
∑

j=m(k)
−λkgT

k dk

,k > 1,

0 ,otherwise

(5)

and

ρ2,k =
f (xk)− f (xk +λkdk)

−λkgT
k dk

(6)

and set
ρk = min{ρ1,k,ρ2,k} (7)

If ρk ≥ ε1, then go to Step 4;

Step3. Evaluate λ̂ by restricted quadratic interpolation using f1, f
′
1 and f . Set λk := λ̂ ,

go to Step 2;
Step4. Calculate g := g(xk +λkdk) and f

′
:= gT dk. If

g(xk +λkdk)
T dk ≥max{ε2,1− (λk‖dk‖p)}gT

k dk, (8)

then stop. Otherwise, evaluate λ̂ by restricted quadratic extrapolation using f1, f
′
1 and f

′
.

Set f1 := f , f
′
1 := f

′
and λk := λ̂ , go to Step 2;

We define

h(k) =
{

m(k), i f ρk = ρ1, k,
k, i f ρk = ρ2, k.

We will call iteration h(k) the reference iteration associated with iteration k. The above
non-monotone line search sketch is motivated by [17] and [20]. Obviously, the Wolfe line
search, which is often used in theory and application, is a special case of the above line
search with M0 = 0, p = 0.

2 Preliminary assumption and lemma
We give the following Assumptions:
Assumption 1. The level set D = {x| f (x)≤ f (x0)} is bounded and there exists posi-

tive constants m and M such that

m‖z‖2 ≤ zT G(x)z≤M‖z‖2. (9)

for all z ∈ Rn and all x ∈ D, and G(x) denotes the Hessian matrix of f .
Assumption 2. f ∈C2.
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From Assumption 1 we can easily induce that there exist two positive numbers m and
M such that

m‖sk‖2 ≤ yT
k sk ≤M‖sk‖2.

Lemma 2.1.[11] Assume that Assumption 1 and Assumption 2 hold, then there exists
a positive number M such that

‖yk‖2

yT
k sk
≤M, k = 1,2, · · · .

Lemma 2.2.[9] Assume that Assumption 1 and Assumption 2 hold, the sequence {xk}
is generated by the algorithm belonging to non-quasi-Newton family with ϕk satisfies (4),
then there exists a positive number M1 such that

Qk(t)‖yk‖2

(yT
k sk)2 ≤M1 k = 1,2, · · · .

Lemma 2.3. det(Bk+1) ≥ νdet(Bk)
Qk(t)

sT
k Bksk

,ν ∈ (0,1), where det(Bk) denotes the

determinant of Bk.
Proof. If 0≤ ϕk ≤ 1−δ , from chen[8], we easily have

det(Bk+1(ϕk))≤ det(Bk(ϕk))
Qk(t)

sT
k Bksk

. (10)

When ϕk = 0, (10) turns to

det(Bk+1(0)) = det(Bk(0))
Qk(t)

sT
k Bksk

.

Then we now see the case of ϕk ∈ [(1−ν)ϕ∗k ,0], ν ∈ (0,1). From (2) we have

Bk+1(ϕk) = Bk+1(0)+ϕkVkV T
k ,

so we have
det(Bk+1(ϕk)) = det(Bk+1(0)+ϕkVkV T

k )

= det[Bk+1(0)(I +ϕkHk+1(0)VkV T
k )]

= det(Bk+1(0))det(I +ϕkHk+1(0)VkV T
k ).

(11)

Where

Hk+1(0) = Hk(0)−
HkykyT

k Hk

yT
k Hkyk

+
sksT

k
Qk(t)

. (12)
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From (4), (10), (11), (12) and notes that det(I + xyT ) = 1+ xT y, we have

det(Bk+1(ϕk)) = (1+ϕk(µk−1))det(Bk+1(0))

= (1+ϕk(µk−1))det(Bk(0))
Qk(t)

sT
k Bksk

≥ (1+ϕk(µk−1))det(Bk)
Qk(t)

sT
k Bksk

≥ νdet(Bk)
Qk(t)

sT
k Bksk

.

This completes the proof.
Lemma 2.4. If f (xk+1) ≤ f (xh(k)),k = 0,1, · · · , then the sequence { f (xh(k))} mono-

tonically decreases, and xk ∈ D for all k ≥ 0.
Proof. By f (xk)≤ f (xh(k−1)), we have

f (xh(k)) = max
max{k−M0,1}≤ j≤k

f (x j)

≤max{ max
max{k−M0,1}≤ j≤k

f (x j−1), f (xk)}
= max{ f (xh(k−1)), f (xk)}
= f (xh(k−1)), k = 1,2, · · · ,

i.e., the sequence { f (xh(k))} monotonically decreases. Since f (xh(0)) = f (x0), we deduce

f (xk)≤ f (xh(k−1))≤ ·· · ≤ f (xh(0)) = f (x0) xk ∈ D.

Lemma 2.5. Assume that the stepsize λk is determined by Algorithm 1. Then

∞

∑
k=1

(−gT
j s j)<+∞. (13)

Proof. From the definition of h(k), (5), (6), (7) and ρk ≥ ε1, we can easily have

f (xh(k))− f (xk+1)≥ ε1

k

∑
j=h(k)

(−gT
j s j).

Consider the kth iteration. We see that iteration has an associated reference iteration h(k),
in turn, the h(k)th iteration has an associated reference iteration h(k− 1), · · · , up to the
point where x0 is reached by this backwards reference process.

x1 = xh1 , xh( j−1)+1 = xh(h j), j = 2, · · · ,q, xhq+1 = xh(k).

Notes that
f (x1)− f (xk+1) = f (x1)− f (xh1+1)

+
q
∑
j=2

[ f (xh( j−1)+1)− f (xh( j)+1)]+ f (xh(k))− f (xk+1),
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apply Lemma 2.4 2 to each term in the right-hand side of this equation, we have

f (x1)− f (xk+1)≥
∞

∑
k=1

(−gT
j s j). (14)

By induction, we have that {xk} ⊂ D. It follow (H) that { f (xk)} is bounded below on D,
together with (14), which imply that (13) is true.

Lemma 2.6. Assume that the sequence {xk} is generated by the algorithm belonging
to non-quasi-Newton family with ϕk is satisfies (3), in which the stepsize λk is determined
by Algorithm 1. Then

lim
k→∞

(gT
k sk)

2

yT
k sk

= 0.

Proof. From (8), we have

yT
k sk ≥−(1−max{ε2,1− (λk‖dk‖)p})gT

k sk

=−min{1− ε2,(‖sk‖)p}gT
k sk.

(15)

Lemma 2.5 2 implies that
lim
k→∞

(−gT
k sk) = 0. (16)

Assumption 1 and Assumption 2 indicate that

‖gk‖ ≤ c0, k = 1,2 · · · , (17)

where c0 > 0 is a constant. From (15), (16), (17) we have

0 ≤ (gT
k sk)

2

yT
k sk

≤ −gT
k sk

min{1− ε2,(‖sk‖)p} = max{−gT
k sk

1− ε2
,
−gT

k sk

(‖sk‖)p }

≤max{−gT
k sk

1− ε2
,(−gT

k sk)
1−p(c0)

p}→ 0.

This completes the proof.
Lemma 2.6 2 is an important property of our non-monotone algorithm, it plays a vital

role in the later proof of the global convergence of the non-monotone algorithm.

3 Global convergence
In this section, we give our main result, which establishes superlinearly the global

convergence of our non-monotone algorithm belonging to non-quasi-Newton family with
ϕk is satisfies (3).

Theorem 3.1. Suppose that Assumption 1 and Assumption 2 hold. Assume that x0 is
any starting point, B0 is any symmetric positive define matrix, and that the sequence {xk}
is generated by the algorithm belonging to non-quasi-Newton family with ϕk is satisfies
(3), in which the stepsize λk is determined by Algorithm 1. Then

lim
k→∞
‖gk‖= 0.
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Proof. We proceed to prove by contradiction. We may assume that there exists a
constant c > 0 such that

‖gk‖ ≥ c. (18)

From (2) and tr(xyT ) = xT y, we have

tr[Bk+1(t,ϕk)] = tr(Bk)−
‖Bksk‖2

sT
k Bksk

+
Qk(t)‖yk‖2

(yT
k sk)2 +ϕk‖Vk‖2

= tr(Bk)− (1−ϕk)
‖Bksk‖2

sT
k Bksk

+
Qk(t)‖yk‖2

(yT
k sk)2 +ϕk

sT
k Bksk

yT
k sk

‖yk‖2

yT
k sk
−2ϕk

yT
k Bksk

yT
k sk

,

(19)

where tr(Bk) denotes the trace of Bk.
Denote K1 = {k|0 ≤ ϕk ≤ 1− δ ,k ∈ N}, and K2 = {k|(1− ν)ϕ∗k ≤ ϕk < 0,k ∈ N}.

Now we consider the following two cases.
(1) k ∈ K1.
Lemma 2.12 indicates that

‖yk‖2

yT
k sk
· s

T
k Bksk

yT
k sk

/
‖Bksk‖2

sT
k Bksk

≤M
(sT

k Bksk)
2

yT
k sk‖Bksk‖2 = M

(gT
k sk)

2

yT
k sk‖gk‖2 , (20)

and
|yT

k Bksk|
yT

k sk
/
‖Bksk‖2

sT
k Bksk

≤ ‖yk‖sT
k Bksk

yT
k sk‖Bksk‖

≤
√

M
sT

k Bksk√
yT

k sk‖Bksk‖
=−
√

M
gT

k sk√
yT

k sk‖gk‖
.

(21)

From Lemma 2.1 2, Lemma 2.2 2, Lemma 2.5 2, (4), (18), (19)-(21), we have that

tr(Bk+1)≤ tr(Bk)−δ
‖Bksk‖2

sT
k Bksk

+M1, (22)

holds for all sufficiently large k ∈ K1. Without loss of generality, we can assume that (22)
holds for all k ∈ K1.

(2) k ∈ K2.
From the first equality of (19) and Lemma 2.2 2, we have

tr(Bk+1)≤ tr(Bk)−
‖Bksk‖2

sT
k Bksk

+M1,

which implies that (22) also holds in this case.
Therefore, the relation (22) holds for both cases. It follows that

tr(Bk+1)≤ tr(B1)−δ
k

∑
j=1

‖B js j‖2

sT
j B js j

+ kM1 ≤ kM2−δ
k

∑
j=1

‖B js j‖2

sT
j B js j

,

where M2 = M1 + tr(B1). (22) implies that

det(Bk+1)≤ [
tr(Bk+1)

n
]n ≤ [

kM2

n
]n, (23)
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and
k

∑
j=1

‖B js j‖2

sT
j B js j

≤ kM2

δ
≡ kM3. (24)

It follows from the geometric-arithmetic mean value formula, we have

k

∏
j=1

‖B js j‖2

sT
j B js j

≤Mk
3 . (25)

Lemma 2.3 2 indicates that

k

∏
j=1

ν
Q j(t)

sT
j B js j

≤ det(Bk+1)

det(B1)
. (26)

By (18), (23)-(26), we have

k
∏
j=1

yT
j s j

(gT
j s j)2 ≤

k

∏
j=1

‖g j‖2

c2 ·
yT

j s j

(gT
j s j)2 =

k

∏
j=1

‖B js j‖2yT
j s j

c2(sT
j B js j)2

=
k
∏
j=1

‖B js j‖2

c2(sT
j B js j)

· Q j(t)
sT

j B js j
·

yT
j s j

Q j(t)
≤ [kM3/n]n

det(B1)
· (M3M

c2mν
)k ≤M4,

where M4 > 0 is a constant. The above relation is in contradiction with Lemma 2.6.
The Q-superlinear convergence of Algorithm 1 then follows from the related assump-

tion in addition if the line search algorithms sets λk = 1 for all sufficiency large k, which
will satisfy this conditin if the unit stepsize is always tried first.

Assumption 3. The Hessian matrix G(x) of f (x) is Lipschitz continuous at x∗(a sta-
tionary point), i.e., there exists a constant L∗ such that

‖G(x)−G(x∗)‖ ≤ L∗‖x− x∗‖

for all x in some neighborhood of x∗.
Theorem 3.2. Suppose that Assumptions 1-3 hold, the sequence {xk} is generated by

Algorithm 1, then {xk} converges to x∗ Q-superlinearly.
Proof. We begin by showing that there exists k0 such that for all k≥ k0, λk = 1. From

the definition of f (xh(k)), step 2 of the algorithm 1 and Lemma 2.4 2, we can easily get

f (xk +dk)− f (xh(k))− ε1g(xk)
T dk ≤ f (xk +dk)− f (xk)− ε1g(xk)

T dk

we find for some ak ∈ [0,1] that

f (xk +dk)− f (xk)− ε1g(xk)
T dk = (1− ε1)g(xk)

T dk +
1
2

dT
k G(xk +akdk)dk =

−(1
2
− ε1)dT

k Bkdk +
1
2

dT
k [G(xk +akdk)−Bk]dk ≤

−‖dk‖2[σ∗(
1
2
− ε1)−‖G(xk +akdk)−G∗‖− ‖(Bk−G∗)dk‖

‖dk‖
],

(27)
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where we have used the lower bound σ∗ on the eigenvalue of Bk. Now dk→ 0 as k→ ∞,
because g(xk)→ 0 as k→∞ and the eigenvalue of Bk are bounded. Hence, by continuity,

‖G(xk +akdk)−G∗‖→ 0

as k→∞. Next, since λkdk = sk, it follows
‖(Bk−G∗)dk‖
‖dk‖

→ 0 as k→∞ from [2]. Hence

there must exist a k0 such that the right-hand side of (27) is negative, which implies that
λk = 1 for k ≥ k0. since the remainder proof is the same as the superlinear convergence
proof in [10], we omit the following proof.
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