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Abstract In this paper, non-monotone line search procedure is studied, which is combined with
the non-quasi-Newton family. Under the uniformly convexity assumption on objective function,
the global and superlinear convergence of the non-quasi-Newton family with the proposed non-
monotone line search is proved under suitable conditions.
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1 Introduction

Consider the following nonlinear programming problem
min f(x), 1

where f: R" — R!, f € C2. General line search methods for solving (1) have the following
form
Xk+1 :.X'k‘i‘lkdk, k:Oa ]72a"' .

where xo is any given starting point, A is a stepsize, dy is a search direction. It is known
that the quasi-Newton methods are efficient iterative methods. Many papers were de-
voted to investigating the properties of the Broyden class algorithms!!-23%5 Meanwhile,
the study on non-quasi-Newton method, a method including function information which
does not satisfy the quasi-Newton equation and has merits comparing to Broyden’s class
in some fields, has also made good progress. In 1991, Yuan Yaxiangm proposed a mod-
ified BFGS algorithm. In 1995, Yuan Yaxiang and Byrdm gave a non-quasi-Newton
class. In 1997 and 2000, Chen Lanping and Jiao Baocong[&g] extended a new non-quasi-
Newton family, they just gave global convergence with Wolfe-type line search. In 2006,
Liu Hongwei“(’] inroduce a new update formula for non-quasi-Newton’s family and prove
that the algorithm with the update formula by Wolfe-type and Armijo-type line search
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converges globally and Q-superlinearly if the function to be minimized has Lipschitz con-
tinuous gradient. The purpose of this paper is to study this problem further. The search
direction of the non-quasi-Newton methods is determined as follows:

dy = —Hgr, gx = Vf(xk),

where Hy is any given n X n symmetric positive definite matrix, Hy = Bk_l. The Hessian
9l

approximation By, is updating by

_ BusisiBr | Q1)
seBisi (v se)

Biyi(t, 1) = B Sk + eV )

where (0] is a scalar, fk = f(xk), Yk = 8k+1 — 8k Sk = Xk+1 — Xk = lkdk and

Or(t) = tylse+2(1—1)Ry,t €[0,1],
A
Re = fir—fi—8h sk 5
1k Sk
Vi = (s} Bisi)2( - )

T T :
YeSk S Bisk

The choice of the parameter ¢ is important, since it can greatly effect the performance
of the methods. When r=1 or 0 from (2), we can obtain the Broyden algorithm or the
quasi-Newton-B algorithm!'!/,

It is well known that if the initial Hessian approximation By is symmetric and positive
definite, together with y,{sk > 0O for all k and

st Brsiy) Hiy

L1
P> Q=70 M PR 3)

w' Tt (s

then all the matrices By remain symmetric and positive definite['2).

Powelll'*l showed that the BFGS method is globally convergent for convex functions
and Byrd, Nocedal and Yuan!'¥ extended his result to ¢ € [0,1). For convex functions,
Zhang and Tewarson!'! proved the global convergence of Broyden’s class with ¢ € [(1—
v)(p,j,O], where Vv is a number in (0,1). For uniformly convex functions, Byrd, Liu and
Nocedall'®! proved the global convergence of Broyden’s class with

(pkE[(l—V)q)/:,l—aL 6,\/6(0,1) €]

and this work is also done about non-quasi-Newton family/$%).

It is well known that the objective functions sequences generated by the above algo-
rithms are monotonically decreasing; i.e., f(xg+1) > f(x), k=1,2,--- . In 1986, Grippo
et al.l'7! proposed a non-monotone line search technique for Newton’s method. Since
then, the non-monotone technique has been studied by many authors!'819201  Theoretic
analysis and numerical results show that the algorithms with non-monotone properties
are more efficient than the algorithms with monotone properties. In this paper, under the
condition (4), we combine with non-monotone technique to propose a non-monotonical
non-quasi-Newton method based on [8] and study its convergence properties.

Algorithm 1
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Stepl. Initially 0 < & < & < 1, p < 1, A = 1 is given. My is a nonnegative integer.
f1:= f(x), f, := g dx < 0. Compute the largest index m(k) such that

FOmw) = xS (x))-

Step2. Calculate f := f(x; + Axdy) and the ratios

F X)) — f Cor + Awdly)

1
k ) b)
Pix = Y —Agldy &)
Jj=m(k)
0 ,otherwise
nd F0) = O+ Med)
Xk ) — J (X + Axdie
= 6
P2k “iuslds (6)
and set
pr = min{p; x, P24} (7)

If px > €1, then go to Step 4;

Step3. Evaluate 2 by restricted quadratic interpolation using fi, f{ and f. Set Ay := 1,
go to Step 2;

Stepd. Calculate g := g(x; + Ady) and f = g7dy. If

gk + M) die > max{ez, 1 — (Ae|dil|”)}gf i, (®)

then stop. Otherwise, evaluate 2 by restricted quadratic extrapolation using fi, f{ and f ",
Set f1 :=f, f; = f’ and A := A, go to Step 2;
We define ®
m(k), if px=pP1«
h(k) = ; '

(k) {k, if Pr=p2,
We will call iteration h(k) the reference iteration associated with iteration k. The above
non-monotone line search sketch is motivated by [17] and [20]. Obviously, the Wolfe line
search, which is often used in theory and application, is a special case of the above line
search with My =0, p=0.

2 Preliminary assumption and lemma

We give the following Assumptions:

Assumption 1. The level set D = {x|f(x) < f(xo)} is bounded and there exists posi-
tive constants m and M such that

m||z||> < T G(x)z < M||z||%. )

for all z € R" and all x € D, and G(x) denotes the Hessian matrix of f.
Assumption 2. f € C2.
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From Assumption 1 we can easily induce that there exist two positive numbers m and
M such that
2 T 2
m|sel|” < yisi < Msel|”

Lemma 2.1.['! Assume that Assumption 1 and Assumption 2 hold, then there exists
a positive number M such that

2
Vi Sk
Lemma 2.2.° Assume that Assumption 1 and Assumption 2 hold, the sequence {xe}

is generated by the algorithm belonging to non-quasi-Newton family with ¢y satisfies (4),
then there exists a positive number M; such that

¢ 2
OIS
(yk sk)
Ok(7)
Lemma 2.3. det(By1) > vdet(By) TV € (0,1), where det(By) denotes the
Sk DkSk

determinant of By.
Proof. If 0 < ¢, < 1—6, from chen[g], we easily have

der (B (90)) < der(Bi(90)) S (10)
k

When ¢, = 0, (10) turns to

det(Bi11(0)) = det(Bi(0))

Then we now see the case of ¢ € [(1 — V)@ ,0], v € (0,1). From (2) we have

Bis1 (@) = Bs1(0) + ViV

so we have
det(Bis1(9x)) = det (Bi1 (0) + g ViV,
= det[Bi11(0) (I + @cHyy1 (0)Vi V)] (11)
=det(By11(0))det (I + QpHyr1 (O)VkaT).

Where

B HoyolHe  sest

Hie1(0) = Hi(0) Vi Hpye  Oc(t)
k

12)
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From (4), (10), (11), (12) and notes that det (I +xy”) = 1 +xTy, we have
det(Br+1(9r)) = (1+ @ (i — 1))det (Bi11(0))

(1+ i — D) (B 0) 25

> (1t ey — 1))der (B) 20

Sk Bksk

t
> vder (B) -2
Sk BkSk

This completes the proof.

Lemma 2.4. If f(xi1) < f(xp)),k = 0,1, -, then the sequence {f(x;())} mono-
tonically decreases, and x; € D for all k>0.

Proof. By f(x;) < f(xk—1)), we have

f(Xh(k)) B max{k r%Eolfil}<1<k

= maX{max{kfnﬂzaol?(l}SiSkf(x17 : ) ’ f(Xk) }

= max{f(xXpk—1)), [ ()}
:f(xh(kfl)% k= 1,2,"' )

i.e., the sequence {f(x;() )} monotonically decreases. Since f(x;()) = f(x0), we deduce

JOa) < f(ng_yy) < -+ < flxngo)) = f(x0) xe €D.

Lemma 2.5. Assume that the stepsize Ay is determined by Algorithm 1. Then

s

(—glisj) < oo (13)

k=1

Proof. From the definition of (k), (5), (6), (7) and p; > €], we can easily have

k
) = flxip) > & Y, (—ghsj)-
Jj=h(k)

Consider the kth iteration. We see that iteration has an associated reference iteration i (k),
in turn, the h(k)th iteration has an associated reference iteration h(k— 1), ---, up to the
point where x is reached by this backwards reference process.

X1= Xy Xng 41 = Xp(ny)s = 250034 Xngt1 = Xk

Notes that
f(x1) Forr) = £x1) = f (1)

B O 00) = 5 1)) o) = k)
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apply Lemma 2.4 2 to each term in the right-hand side of this equation, we have

s

FOn) = fougr) = Y (—ghsp). (14)

k=1

By induction, we have that {x;} C D. It follow (H) that {f(xx)} is bounded below on D,
together with (14), which imply that (13) is true.

Lemma 2.6. Assume that the sequence {x;} is generated by the algorithm belonging
to non-quasi-Newton family with ¢y is satisfies (3), in which the stepsize A; is determined

by Algorithm 1. Then
T )2
lim (gk )

=0.
k—>oo y,fsk

Proof. From (8), we have

yise = —(1—max{ey, 1 — (Al|dkl)"}) gt sk

15)
= —min{1 — &, (|lskl))" Y& sx-
Lemma 2.5 2 implies that
lim (—g/ sx) = 0. (16)
k—ro0
Assumption 1 and Assumption 2 indicate that
||gk||§00a k:1727 (17)

where co > 0 is a constant. From (15), (16), (17) we have

0 < (8] s¢)? —gr sk _ {—g;fsk —g;{sk}
Vi Sk ; min{1 — &, (||st[[)?} 1—& " (|Isll)P

— 8 Sk _
< max{ _k82 ,(—gi ) 7P (co)’} = 0.

1

This completes the proof.

Lemma 2.6 2 is an important property of our non-monotone algorithm, it plays a vital
role in the later proof of the global convergence of the non-monotone algorithm.

3 Global convergence

In this section, we give our main result, which establishes superlinearly the global
convergence of our non-monotone algorithm belonging to non-quasi-Newton family with
¢ is satisfies (3).

Theorem 3.1. Suppose that Assumption 1 and Assumption 2 hold. Assume that xy is
any starting point, By is any symmetric positive define matrix, and that the sequence {x; }
is generated by the algorithm belonging to non-quasi-Newton family with ¢ is satisfies
(3), in which the stepsize Ay is determined by Algorithm 1. Then

lim ||g«/| = 0.
k—yoo
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Proof. We proceed to prove by contradiction. We may assume that there exists a
constant ¢ > 0 such that
llgxll > c. (18)

From (2) and tr(xy”) = xTy, we have

[Besel|> Ok(t) [lye]?

tr[Bri1(t, )] = tr(By) — + | Vil ?

[ * ] SIT;BkSk (y;{Sk)z r - (19)
_ Besel* | Ow(0)llyell” st Besk |lyil* Vi Bisk
=tr(By) — (1 — @)~ T T F T 20T

SkBksk (yksk) Yisk Vi Sk Vi Sk

where 77(By) denotes the trace of By.

Denote K| = {k|0 < ¢ <1 -0,k € N}, and K = {k|(1 - V)@; < ¢ <0,k € N}.
Now we consider the following two cases.

() keKk.

Lemma 2.12 indicates that

2 (T 2 TR o2 T 2
[viell® s Bisk || Besll <M (s Brsk) —u (8 5%)

< = ; (20)
Yisk  yisk ' s{Busk Vi skl Bisk|)? i sillgxl?
and 5 ’
i BkSk\ | Besll < (k|5 Bisk
yise © sTBisk = ylsil|Brsk||
sTBysy gl sy (21)
< MBSk
Vi sl Bes| yksngk”
From Lemma 2.1 2, Lemma 2.2 2, Lemma 2.5 2, (4), (18), (19)-(21), we have that
Brsi|?
(o) < er(By) — SIBT Ly (22)
Sk Bksk

holds for all sufficiently large k € K;. Without loss of generality, we can assume that (22)
holds for all k € K;.

2) ke K>.
From the first equality of (19) and Lemma 2.2 2, we have

[ Bresl|®

tr(B, <tr(By)—
r(Biy1) < tr(By) By,

+M17

which implies that (22) also holds in this case.
Therefore, the relation (22) holds for both cases. It follows that

B, <tr(B ) k HB SJ” kM, < kM, — 6 HB SJHZ
tr(Biy1) <tr(By)— ;W+ Z, TBs]
J= J Jj=1
where M, = M) +tr(By). (22) implies that
tr(B kM.
der(Bgsy) < 1Bl o (M) @3

n n



Global Convergence of the Non-Quasi-Newton Method 277

and }
1Bjsil> _ kM,
— =kMj;. 24
Z stBisi — 6 3 24

L < ' M. 25)

Lemma 2.3 2 indicates that

ﬁ\’ Q;(t) d€f(3k+1)

stBjsj — det(By) | (26)

j:

By (18), (23)-(26), we have

b y]TSj 11‘1 Ig/|| isi o IBsilPyTs)

j=1 (gj sj)? j= (gj 31)2 j=1 Cz(sjrBij)z

_ 1 I1Bjsjl* Qj() VS < [kM3/n]" (MM ey,
j=1¢2(siBysj) sTBjsj Qj(t) = det(By) “ctmve T T

where M4 > 0 is a constant. The above relation is in contradiction with Lemma 2.6.

The Q-superlinear convergence of Algorithm 1 then follows from the related assump-
tion in addition if the line search algorithms sets A4, = 1 for all sufficiency large k, which
will satisfy this conditin if the unit stepsize is always tried first.

Assumption 3. The Hessian matrix G(x) of f(x) is Lipschitz continuous at x*(a sta-
tionary point), i.e., there exists a constant L* such that

1G(x) = G| < L7[lx — 7|

for all x in some neighborhood of x*.

Theorem 3.2. Suppose that Assumptions 1-3 hold, the sequence {x;} is generated by
Algorithm 1, then {x;} converges to x* Q-superlinearly.

Proof. We begin by showing that there exists k¢ such that for all k > kg, A = 1. From
the definition of f(x)), step 2 of the algorithm 1 and Lemma 2.4 2, we can easily get

FO+di) = f ) — €18(x) T die < f (e + i) — f(xe) — €18(x) " di

we find for some a; € [0, 1] that

S+ di) — f ) — e1g(xa) de = (1—€1)g ()" die + %dkTG(xk + ardi)dy =

1 1
—(5 — &1)d] Bydy + EdkT [G(xx + axdy) — Bildi < (27)
|(Bx — G*)dy||

1 *
—|ldi||*[ox(5 — &1) — || G xx + ardy) — G*|| — ],
2 |
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where we have used the lower bound o, on the eigenvalue of B;. Now dy — 0 as k — oo,
because g(x;) — 0 as k — oo and the eigenvalue of By are bounded. Hence, by continuity,

|G (x + axdi) = G*|| = 0

[(Bk — G )|
[[di |
there must exist a ko such that the right-hand side of (27) is negative, which implies that
A = 1 for k > ko. since the remainder proof is the same as the superlinear convergence

proof in [10], we omit the following proof.

as k — o, Next, since Agdy; = sy, it follows — 0 as k — oo from [2]. Hence
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