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Abstract In this paper concept of generalized saddle point(GSP) is introduced and applied to
an optimization problem of a set of functionals on a Banach space, which shows that GSP and the
optimum solution are equivalent. Although sun-point is a essential concept in approximation theory,
their relation is seldom discussed. In this paper sun-point is also introduced to depict the optimum
solution of a problem, and if functionals are convex, the equivalence between GSP and sun-point is
established.
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1 Introduction
Saddle point has been much interested by people because of its wide range of appli-

cation in mathematics, engineering and game theory[4, 5, 8]. The dominance of saddle
point is that it represents an optimum solution of a ’Min-Max’ problem without using
differentiability of functions. The book written by Eberhard Zeidler shows that it is very
essential and useful in optimization theories[5]. The concept of generalized saddle point
(GSP) has been introduced in [1] and is used to study the integrated optimization problem
of a set of convex functionals on a Banach space. Extensive investigation of GSP method
in approximation theory has been done in [2, 3]. Sun-point is an important concept in
nonlinear best approximation theory, which is the generalization of convex set. However,
Sun-point in best approximation theory is different from the extreme point of convex set.
The aim of this paper is to establish the equivalence between GSP and sun-point, which
is seldom discussed in the existed papers.

Assume X is a Banach space and H is a set of continuous and real-valued functions
ϕs on X , i.e., ϕ : X → F , where F is the real number field. We define Γ = sup

ϕ∈H
ϕ , that is

Γ(x) = sup
ϕ∈H

ϕ(x), x ∈ X . Let G be a subset of X , we consider the following optimization
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problem
(Γ,G) : inf

g∈G
Γ(g).

If g0 ∈ G, it satisfies Γ(g0) = inf
g∈G

Γ(g), then we call g0 be an optimum solution of (Γ,G).

Let P(Γ,G) be the set of all the optimum solution of (Γ,G), namely,

P(Γ,G) = {g0 ∈ G : Γ(g0) = inf
g∈G

Γ(g)}.

Let ϕ be in H, the notations of inf
g∈G

ϕ(g), P(ϕ,G), ϕ(g0) = inf
g∈G

ϕ(g) have the similar

meaning as the above inf
g∈G

Γ(g),P(Γ,G),Γ(g0) respectively.

The rest of this paper proceeds as follows. In section 2 we introduce the concept
of generalized saddle point and discuss the equivalent relation with optimum solution.
Section 3 presents equivalence between GSP and sun-point.

2 Generalized saddle point solution of (Γ,G)
Let X be a Banach space and H̃ be a set of the real-valued functions on X . Now we

define a function Ψ : (H̃,X)→ R, that is

Ψ(ϕ,x) = ϕ(x), ∀(ϕ,x) ∈ (H̃,X).

Let H be a subset of H̃ and G be the subset of X , we also define

Γ(x) = sup
ϕ∈H

ϕ(x) = sup
ϕ∈H

Ψ(ϕ,x),

then we define an optimization problem (Γ,G)

(Γ,G) : inf
g∈G

Γ(g) = inf
g∈G

sup
ϕ∈H

Ψ(ϕ,g).

Now we introduce the following set for convenient discussion,

M(Γ,x) = {ϕ0 ∈ H : Γ(x) = ϕ0(x), x ∈ X}.

Definition 1. Let (ϕ̄, ḡ) ∈ (H,G), we call (ϕ̄, ḡ) to be generalized saddle point (GSP) of
Ψ in (H,G), if it satisfies the following condition,

Ψ(ϕ, ḡ)≤Ψ(ϕ̄, ḡ)≤Ψ(ϕ̄,g), (ϕ,g) ∈ (H,G).

The notion of saddle point is a fundamental concept in many areas of science and
economics. A classical instance is the famous saddle point theorem for a zero-sum matrix
game due to J. Von Neumann and O. Morgenstern [8].

Lemma 1. Let (ϕ̄, ḡ) ∈ (H,G) be the GSP of Ψ, then ḡ ∈ P(Γ,G) and ϕ̄ ∈M(Γ,ḡ).
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Proof. Let (ϕ̄, ḡ) ∈ (H,G) be the GSP of Ψ, then we have Ψ(ϕ, ḡ) ≤ Ψ(ϕ̄, ḡ), that is
ϕ(ḡ)≤ ϕ̄(ḡ). Then we know that sup

ϕ∈H
ϕ(ḡ)≤ ϕ̄(ḡ), that is to say Γ(ḡ)≤ ϕ̄(ḡ). Conversely,

it is easy to know Γ(ḡ)≥ ϕ̄(ḡ). Hence, we get

Γ(ḡ) = ϕ̄(ḡ), (1)

which means ϕ̄ ∈M(Γ,ḡ). On the other hand, by the inequality Ψ(ϕ̄, ḡ)≤Ψ(ϕ̄,g), we
get

ϕ̄(ḡ)≤ inf
g∈G

ϕ̄(g)≤ inf
g∈G

sup
ϕ∈H

ϕ(g) = inf
g∈G

Γ(g). (2)

Therefor we have Γ(ḡ) ≤ inf
g∈G

Γ(g) from inequalities (1) and (2), that is to say, ḡ ∈
P(Γ,G).

Lemma 2. Let ϕ̄ ∈ H, ḡ ∈ P(ϕ̄,G) and ϕ̄ ∈M(Γ,ḡ), then ḡ ∈ P(Γ,G).

Proof. Let ϕ̄ ∈ H, ḡ ∈ P(ϕ̄,G) and ϕ̄(ḡ) = Γ(ḡ). Then, for any g in G, we have

Γ(ḡ) = ϕ̄(ḡ) = inf
g∈G

ϕ̄(g)≤ ϕ̄(g)≤ Γ(g).

So we have Γ(ḡ) ≤ inf
g∈G

Γ(g). It is evident to get the inequality inf
g∈G

Γ(g) ≤ Γ(ḡ). Hence,

we get the equality Γ(ḡ) = inf
g∈G

Γ(g), i.e., ḡ ∈ P(Γ,G).

Lemma 3. Let (ϕ̄, ḡ) ∈ (H,G), if ḡ ∈ P(ϕ̄,G), ϕ̄ in M(Γ,ḡ), then (ϕ̄, ḡ) is a GSP of Ψ in
(H,G).

Proof. Let ḡ ∈ P(ϕ̄,G), ϕ̄ ∈M(Γ,ḡ), then using the Lemma 2 we have ḡ ∈ P(Γ,G). Further-
more, we get

sup
ϕ∈H

Ψ(ϕ, ḡ) = Γ(ḡ) = ϕ̄(ḡ) = Ψ(ϕ̄, ḡ). (3)

Therefor we have the inequality Ψ(ϕ, ḡ)≤Ψ(ϕ̄, ḡ) for any ϕ in H.
On the other hand, for arbitrary g ∈ G, we get

Ψ(ϕ̄, ḡ) = Γ(ḡ) = ϕ̄(ḡ)≤ ϕ̄(g) = Ψ(ϕ̄,g), (4)

by using ḡ ∈ P(ϕ̄,G). Then the following inequalities are established

Ψ(ϕ, ḡ)≤Ψ(ϕ̄, ḡ)≤Ψ(ϕ̄,g) ∀(ϕ,g) ∈ (H,G)

by using (3) and (4), which implies that (ϕ̄, ḡ) is the GSP of Ψ in (H,G).

We are able to get the following theorem by lemma 1 and 3,

Theorem 4. Let (ϕ̄, ḡ) ∈ (H,G), then ḡ ∈ P(ϕ̄,G) and ϕ̄ ∈M(Γ,ḡ), if and only if (ϕ̄, ḡ) is a
GSP of Ψ in (H,G).
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3 Equivalence Between GSP and sun-point
We introduce the following notations for convenient discussion. Directional derivative

of function ϕ and Γ at x (see [7] p.16) are defined respectively as

ϕ
′
(x,y) = lim

α→0+

ϕ(x+αy)−ϕ(x)
α

, ϕ ∈ H,

Γ
′
(x,y) = lim

α→0+

Γ(x+αy)−Γ(x)
α

,

and G̃g0 is defined as following,

G̃g0 =
⋃

g∈G

{gα : gα = (1−α)g0 +αg, α ∈ [0,1],g0 ∈ G},

Definition 2. We say that g0 is a sun-point (see [6]) of Γ in G , if g0 ∈ P(Γ,G) implies
g0 ∈ P(Γ,G̃g0 )

, where P(Γ,G̃g0 )
is the optimum solution set of (Γ, G̃g0).

Definition 3. Let x ∈ X , and ‖x‖X < ∞, we say H be bounded with respect to x, if there
is a positive number M > 0 such that |ϕ(x)| ≤M for all ϕ ∈ H, where ‖ · ‖X is the norm
of Banach space X .

Definition 4. We say H is a closed set with respect to x, if the numeral set {ϕ(x)|ϕ ∈
H,‖x‖X < ∞,x ∈ X} is a closed set.

Lemma 5. Let x be in X with ‖x‖X < ∞, if H is a closed and bounded set with respect to
x, then M(Γ,x) is a nonempty set.

Proof. We assume that M(Γ,x) is an empty set with ‖x‖X < ∞,x ∈ X , i.e., for any ϕ ∈ H,
we have ϕ(x)< Γ(x).
By Γ(x) = sup

ϕ∈H
ϕ(x), we obtain that there exists a sequence {ϕi}∞

i=1 ⊂ H such that

lim
i

ϕi(x) = Γ(x).

By the set {ϕ(x)|ϕ ∈ H,‖x‖X < ∞,x ∈ X} being a closed and bounded set, we get that
there exists a convergent subsequence {ϕik}∞

k=1 of {ϕi}∞
i=1 and a ϕ0 ∈ H such that

Γ(x) = lim
k

ϕik(x) = ϕ0(x).

By the assumption at the beginning of the proof, we get the contradiction

Γ(x)< Γ(x),

which shows that the set M(Γ,x) is not empty.

This theorem represents the rationality of the set M(Γ,x).

Lemma 6. Let x,y ∈ X, H be closed and bounded with respect to x, then we have
Γ′(x,y) = ϕ ′0(x,y) for arbitrary ϕ0 ∈M(Γ,x)
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Proof. By the lemma 5, we know that M(Γ,x) is not an empty set.
On one hand, for ∀ϕ0 ∈M(Γ,x)

Γ
′
(x,y) = lim

α→0+

Γ(x+αy)−Γ(x)
α

= lim
α→0+

sup
ϕ∈H

ϕ(x+αy)− sup
ϕ∈H

ϕ(x)

α

≥ lim
α→0+

ϕ0(x+αy)−ϕ0(x)
α

= ϕ0′ (x,y) (5)

On the other hand, for any α > 0, by the definition of supremum, we get that there exists
a ϕ1 ∈ H such that

Γ(x+αy) = sup
ϕ∈H

ϕ(x+αy)≤ ϕ1(x+αy)+α2.

Furthermore, by using ϕ1(x)≤ϕ0(x) =Γ(x) and the continuity of ϕi(i= 0,1), there exists
an ᾱ > 0 such that ϕ1(x+αy)≤ ϕ0(x+αy), α ∈ (0, ᾱ), and also we have

Γ(x+αy)≤ ϕ1(x+αy)+α2 ≤ ϕ0(x+αy)+α2.

Thus we have

Γ
′
(x,y) = lim

α→0+

Γ(x+αy)−Γ(x)
α

≤ lim
α→0+

ϕ0(x+αy)−ϕ0(x)+α2

α
= ϕ

′
0(x,y) (6)

By the inequalities (5) and (6), we have Γ′(x,y) = ϕ ′0(x,y), ∀ϕ0 ∈M(Γ,x).

Assume ϕ ∈H is convex and real-valued function, then we have the following lemma.

Lemma 7. Γ = sup
ϕ∈H

ϕ is also a convex function on X.

Proof. Let α ∈ [0,1], for arbitrary x1,x2 ∈ X , we have that

Γ(αx1 +(1−α)x2) = sup
ϕ∈H

ϕ(αx1 +(1−α)x2)

≤ sup
ϕ∈H

(αϕ(x1)+(1−α)ϕ(x2))

≤ α sup
ϕ∈H

ϕ(x1)+(1−α) sup
ϕ∈H

ϕ(x2)

= αΓ(x1)+(1−α)Γ(x2)

we get,hence, that Γ is a convex function on X .
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Theorem 8. Let H be a closed and bounded set with respect to g0, ϕ ∈H be convex and
real-valued function, Γ defined as the above, g0 ∈ G, then the following statements are
equivalent,

(1) g0 is a sun-point of Γ in G,
(2) g0 ∈ P(Γ,G)⇔ Γ′(g0,g−g0)≥ 0,
(3) g0 ∈ P(Γ,G)⇔ ϕ ′0(g0,g−g0)≥ 0 for all ϕ0 ∈M(Γ,g0).
(4) g0 ∈ P(Γ,G) and ϕ0 ∈M(Γ,g0)⇔ (ϕ0,g0) is a GSP of Ψ in (H,G).

Proof. We define a function

γ(λ ) =
Γ(g0 +λ (g−g0))−Γ(g0)

λ
,

for convenience to prove the theorem, where λ ∈ [0,1].
(1)⇒(2)
If g0 ∈ P(Γ,G), then we have that g0 ∈ P(Γ,G̃g0 )

by condition (1). Hence, ∀g ∈ G, we
obtain

Γ(g0 +λ (g−g0))≥ Γ(g0), λ ∈ [0,1]

So for any λ ∈ (0,1], we get γ(λ )≥ 0, which implies Γ′(g0,g−g0)≥ 0.
Conversely, we know that Γ is a convex function on X by Lemma 7. So for 0 < µ < ν ,

we get

Γ(g0 +µ(g−g0)) = Γ(
µ
ν
(g0 +ν(g−g0))+

ν−µ
ν

g0)

≤ µ
ν

Γ(g0 +ν(g−g0))+
ν−µ

ν
Γ(g0),

which implies γ(µ) ≤ γ(ν), that is to say, γ is an increasing function on [0,1]. Hence,
when λ → 0, we have

γ(λ )≥ Γ
′
(g0,g−g0)≥ 0.

When λ = 1, we get Γ(g)≥ Γ(g0).

(2)⇒(1)
let g0 ∈ P(Γ,G), from condition (2) we get Γ′(g0,g−g0)≥ 0 for all g∈G, which means

for any positive number λ ∈ [0,1], γ(λ )≥ 0, namely, Γ(g0 +λ (g−g0))≥ Γ(g0), that is
to say g0 ∈ P(Γ,G̃g0 )

.

It is evident to see that the equivalence between the statements (2) and (3) is estab-
lished by using Lemma 6.

(3)⇒(4)
Assume g0 ∈ P(Γ,G), then we get ϕ ′0(g0,g−g0)≥ 0 for all ϕ0 ∈M(Γ,g0) from (3). Let

γ(α) =
ϕ0(g0 +α(g−g0))−ϕ0(g0)

α
,
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where α ∈ (0,1]. When ϕ0 is a convex function, It is also been able to prove that γ(α) is
an increasing function on (0,1]. So we have γ(1)≥ lim

α→0+
γ(α)≥ 0, which implies

ϕ0(g)≥ ϕ0(g0). (7)

Furthermore, we can get
ϕ(g0)≤ sup

ϕ∈H
ϕ(g0) = ϕ0(g0), (8)

from ϕ0 ∈M(Γ,g0). By the inequality (7)(8), we have

Ψ(ϕ,g0)≤Ψ(ϕ0,g0)≤Ψ(ϕ0,g), (ϕ,g) ∈ (H,G).

(4)⇒ (3)
Assume (ϕ0,g0) is a GSP of Ψ in (H,G), we have

Ψ(ϕ,g0)≤Ψ(ϕ0,g0)≤Ψ(ϕ0,g),

namely
ϕ(g0)≤ ϕ0(g0)≤ ϕ0(g). (9)

Therefor, by inequality (9) and convexity of ϕ0, we can get

ϕ ′0(g0,g−g0) = lim
α→0+

ϕ0(g0 +α(g−g0))−ϕ0(g0)

α

≥ lim
α→0+

(1−α)ϕ0(g0)+αϕ0(g)−ϕ0(g0)

α

= lim
α→0+

α[ϕ0(g)−ϕ0(g0)]

α
= ϕ0(g)−ϕ0(g0)≥ 0.

Hence, the equivalence between GSP and sun-point is established when functions are
convex.

4 Future Work
GSP and sun-point are all to depict optimum solution of a optimization problem with-

out using directional derivative from their concepts, but the equivalence between them
has been established with the help of directional derivative in this paper. Now we bring
forward the following questions, one is whether convexity is necessary in the course of
proof; another is whether we can find a way out to established the equivalence without
using directional derivative. Our part of future work will be furthered in these prolems.
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