The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19-23, 2010
Copyright © 2010 ORSC & APORC, pp. 233-240

Structural Properties for Job Shop Scheduling
with Setups in a Local Search Environment

Udo Buscher* Liji Shen’

Chair of Industrial Management, Department of Business Administration and Economics,
Dresden University of Technology, 01062 Dresden, Germany

Abstract In this paper, we address the feasibility issue in the job shop scheduling problem in-
volving sequence dependent setup times and reentrancy. Feasibility properties are first developed
for metaheuristic search methods. In addition, we present a modified version of the standard la-
belling algorithm. An alternative algorithm is also developed which requires negligible computing
time and can directly exclude infeasible moves.

Keywords Job shop scheduling; Sequence dependency; Metaheuristics.

1 Introduction

In this study, we focus on exploring feasibility properties for metaheuristic search
methods in the job shop scheduling system, where sequence dependent setup times are
involved. Applications of sequence dependent scheduling are encountered frequently in
process industry operations, where a facility has to be shut down after completing a par-
ticular job, in order to adjust the facility to a desired state for processing the next job.
This changeover delay and its magnitude depend on the similarity in technological re-
quirements for the two consecutive jobs. In terms of Laguna [8], sequence dependency
is, in fact, one of the most difficult aspects in scheduling area. Although the research on
sequence-dependent scheduling is initiated decades ago [7], literature considering such
problems in a job shop environment is rather limited. In respect to their strong practical
relevance, job shop problems with sequence dependent setups thus need to be addressed
adequately.

Regarding solution procedures for the job shop problem with sequence dependent
setup times and makespan objective, [4] proposed a hybrid algorithm combining a ge-
netic algorithm and heuristic rules. Computational analysis confirms that their hybrid
algorithm is superior to methods developed earlier. [3] presented a mixed integer pro-
gramming model and a local search scheme for the same problem. The latter utilizes a
property to reduce computing time. By using benchmark data, [3] showed that the scheme
significantly enhances the performance of several greedy-based dispatching rules. A fast
tabu search heuristic for the underlying problem was first proposed by [1]. [2] presented

*buscher@rcs.urz.tu-dresden.de
Tliji.shen @tu-dresden.de

234 The 9th International Symposium on Operations Research and Its Applications

a synthesis of the methods described in their earlier studies by integrating tabu search in
multi-pass sampling heuristics.

In the subsequent section, we first introduce the symbols used in this paper and some
important definitions. Properties and algorithms are then developed to exclude infeasible
solutions.

2 Notations

Assume that a set of operations O is given. For each operation v, there is a job j(v)
to which it belongs, a machine m(v) on which it must be processed, the corresponding
processing time p, and sequence dependent setup time s,,,, if v directly precedes w.

Furthermore, let PJ(v) represent an operation to be processed prior to operation v in
the job precedence relations, denoted by A. Similarly, SJ(v) is a successor of operation v
in the routing of job j(v). For simplicity, PJ(v) and SJ(v) are referred to as job predeces-
sor and job successor of operation v. More specifically, pj(v) and sj(v) are respectively
the immediate job predecessor and successor of operation v. Symbol p jz(v) is equivalent
to pj(pj(v)) and represents the immediate job predecessor of pj(v). Symbol s;*(v) is
defined analogously. In addition, let pm(v) and sm(v) denote the operations scheduled
directly before and after v on machine m(v).

Moreover, each operation v is associated with a release date (head) r, indicating the
earliest time to start its processing, and a delivery time (tail) ¢, during which period
the corresponding successors must remain in the system. Next, relevant definitions are
introduced as follows [5, 6, 9].

Definition 2.1 (Adjacent operations).
Two operations v and w are adjacent if the following conditions are satisfied:

rw = Tyt py+Sw
@ = GwtDPwtSow-

According to the definition, every pair of consecutive operations on a critical path is
adjacent.

Definition 2.2 (Block).
A block consists of a maximum sequence of adjacent critical operations that are processed
on the same machine.

3 Feasibility properties

While constructing a neighbourhood structure for job shops, the first concern is the
possibly induced infeasible solution. It has been proved that for the standard job shop
scheduling problem, swapping adjacent operations of the same block guarantees the fea-
sibility of the new resulting solution. However, this property does not apply to the case
including sequence dependent setup times [1].

Lemma 3.1.
Starting from a feasible solution, a permutation of two adjacent operations v and w of the
same block may lead to an infeasible solution.

Structural Properties for Job Shop Scheduling with Setups 235

This can be proved by a counterexample as shown in figure 1. If setup times are
not considered, the critical path contains all four operations, of which operations 1 and
4 belong to two independent blocks and operations 2 and 3 form one block. Moreover,
operations 1 and 4 are not adjacent. As a result, the swap of these two operations is not
performed. Conversely, as illustrated in the lower part of figure 1, operations 1 and 4 are
grouped into the same block, and are adjacent in the case with sequence dependent setup
times. Permuting operations 1 and 4 would create a cycle (4,1,2,3,4), which implies an
infeasible solution.

machine
A

My | 1 4‘ ‘ a

Mo 2 ‘3

» time

machine

KB (—

; > time
Figure 1: Example for illustrating lemma 3.1

M2

Property 3.1.
Starting from a feasible solution, a permutation of two adjacent operations v and w of the
same block leads to a feasible solution if

Svw < Psj(v) —&-ppj(w) +min{skl\k €0,le O} (1)

Property 3.2.
Starting from a feasible solution, a permutation of two adjacent operations v and w of the
same block leads to a feasible solution if

Tpjtw) < Tsjv) T Psjv)- @)

Proof The permutation of v and w indicates removing arcs (pm(v),v), (v,w), (w,sm(w))
and adding arcs (pm(v),w), (w,v), (v,sm(w)). Note that the current graph is acyclic. Thus,
if the new graph contains cycles, they must be created by the newly added arcs. In other
words, these arcs must be on the resulting cycles. As illustrated on the left side of figure
2, if a path from sm(w) to v exists, it must also exist in the graph before the permutation,
which results in a cycle (for example, (v,w,sm(w),v)). This obviously contradicts the
assumption that the permutation starts from a feasible solution. The same argument holds
for a path between w and pm(v) which would imply a cycle in the current graph (for

example, (pm(v), v.w. pm(v))).

236 The 9th International Symposium on Operations Research and Its Applications

Therefore, the only possibility for creating a cycle is that a path from v to w exists. In
the current graph, as shown on the right side of figure 2, such a path must connect con-
junctive arcs (v,sj(v)) and (pj(w),w). Otherwise, there would be operations scheduled
between v and w indicating they are not adjacent.

Regarding the new graph after reversing (v, w), note that each node has at most two
outgoing arcs and the arc connecting v and w is removed. As illustrated by the dotted arcs
on the right side of figure 2, the path cannot pass through the newly added arc (v, sm(w)),
since this would lead to a cycle (sm(w), pj(w),w,sm(w)) in the current graph (In this
context, the incoming arc to w can only pass through pj(w) since arc (v,w) is removed
and a path from sm(w) to pm(v) would induce a cycle (sm(w), pm(v),v,w,sm(w)) in the
current graph). Hence, the path must connect v and sj(v).

It can be proved in a similar manner that the path must go through pj(w) instead of
pm(v).

Next, it is to show that the conditions stated in propositions 3.1 and 3.2 prevent such
paths.

Figure 2: Illustration of propositions 3.1 and 3.2

1. Note that a resulting cycle contains at least two conjunctive arcs. We know that the
conjunctive arc from v connects v and sj(v), and the conjunctive arc terminating at
w originates from pj(w). If inequality (1) in proposition 3.1 holds, which requires
that the length of s,,, must be smaller than at least the sum of py;(,), pp ., and the
smallest setup time, an alternate path from v, through sj(v) and pj(w) to w does not
exist. Otherwise there would be a path (0,...,v,sj(v),...,pj(w),w,...,*) longer
than (0,...,v,w,...,x*), indicating that v and w are neither critical nor adjacent. This
again contradicts the assumption.

2. A path from sj(v) to pj(w) indicates that

Tsj(v) T Psjv) <Tsj(v) T Psj) 75 = Tpjiw)s

where s denotes an unspecified setup time. If operations sj(v) and pj(w) are to be
processed on the same machine, then s # 0. On the other hand, the path connecting

Structural Properties for Job Shop Scheduling with Setups 237

sj(v) and pj(w) must pass through other job successor(s) of v or job predecessor(s)
of w. Obviously, in either situation, setup times on the path connecting sj(v) and
pj(w) are greater than 0. Therefore, 7y + Pyj) < Tsj() + Psjiv) T5 < Tpjw) 18
valid. This is a contradiction of inequality (2) given in proposition 3.2.1

Recall the example introduced to illustrate lemma 3.1 where an infeasible solution would
be induced by swapping operations 1 and 4. As shown on the left side of figure 3, job
predecessor of operation 4 (operation 3) must be processed before operation 2 in the
current schedule if the setup time satisfies inequality (1). Otherwise, operations 4 and 1
would not be adjacent. Swapping these two operations thus leads to a feasible schedule.
Concerning inequality (2), no infeasible solution occurs after the permutation as long as
operation 3 is released prior to operation 2. In order to ensure feasibility, proposition 3.1

Proposition 1 Proposition 2
machine machine

' — 1
S Bl IS B

I N
3 I3
» time ‘ » time

Figure 3: Example for illustrating propositions 3.1 and 3.2

specifies the value of setup times. Proposition 3.2 provides another important condition,
according to which, a permutation may still be feasible even if the setup time exceeds
the value determined by (1). Therefore, proposition 3.2 complements the first one, and it
actually represents another perspective to identify infeasible solutions.

In addition, the next lemma follows immediately.

Lemma 3.2.
Proposition 3.2 applies to job shop problems with reentrancy.

Job shop problems with reentracy indicate that a job may pass through the same ma-
chine more than once. In this context, proposition 3.2 actually prevents all alternative
paths from v to w that contain operations assigned to different reentrant levels. Therefore,
this proposition is also valid for reentrant job shop settings.

4 Algorithm for excluding infeasibilities

Propositions 3.1 and 3.2 can be directly utilized to ensure feasibility, which requires
only constant and negligible computing time. However, it should also be noted that they
are sufficient but not necessary conditions. Feasible solutions may therefore be discarded
as well. For example, pj*(w) and s,;2(v) are processed on the same machine (connected
by a disjunctive arc) in figure 4. Thus, no cycles would be created by reversing arc (v, w)
aslongas r),p(,) <1y, + Pyj2(y) holds. In comparison to inequality (2), we have

Tp2w) <Tpjtw) = Tsj(v) T Psj(v) <Ts2w) + Psj2(v):

238 The 9th International Symposium on Operations Research and Its Applications

Figure 4: Example (pj?(w) and sj%(v) connected by a disjunctive arc)

Obviously, proposition 3.2 represents rather strict conditions.

Generally, a so-called labelling algorithm can be applied to identify infeasible sched-
ules in addition to determining makespan. First, we present a modified version of the
standard labelling algorithm in [10], where sequence dependent setup times are present.
More specifically, we focus on anticipatory setup indicating that setup can be carried out
in the absence of the corresponding operation/job. Hence, r(u) and g(u) can be calculated
according to the following equations:

~
—~
<
~
|

max{r(pj(u)+ p(pj(u));r(pm(u)) + p(pm(u)) +s(pm(u),u)}, (3)
max{q(sj(u)+ p(sj(u));q(sm(u)) + p(sm(u)) + s(u,sm(u))}. 4

Q
—
<
=

|

It is obvious that the processing of operation u can only start upon the completion of both
pj(u) and pm(u). Analogously, g(u) is determined by its job and machine successors.
In comparison to the conventional determination, sequence dependent setup times are
incorporated. Regarding anticipatory setup times, setup of an operation may directly
follow the associated preceding operation on the same machine. Therefore, the setup
calculation is included in the term with r(pm(u)). In other words, pj(u),u and sj(u) may
be processed without interruption. Consequently, the length of a longest path containing
operation u is written as (denoted by .Z)

L =r(u)+p(u)+q(u). (5)
Furthermore, the makespan of a given schedule is determined by

Coax = muax{fu*}. (6)

The procedure of the modified labelling algorithm AMLAB is presented below:

Step 1. Group all operations that have no job and machine predecessor into set
X.

Step 2. Select an operation u € £, calculate r(u) according to equation (3).

Step 3. If operation pm(sj(u)) is labelled or does not exist, then Z = Z Us j(u).

Step 4. If operation pj(sm(u)) is labelled or does not exist, then #Z = % U
sm(u).

Step 5. Label operation u and remove it from set 2.

Step 6. If Z = © then Stop. Otherwise goto Step 2.

Structural Properties for Job Shop Scheduling with Setups 239

Values of g are analogously determined starting with operations without machine or job
successors. Infeasibilities occur if set Z = @ and not all operations are labelled. Obvi-
ously, the modified labelling algorithm requires O(mn) time, where m and n are respec-
tively the total number of machines and jobs.

In order to preserve feasible solutions, we propose an alternative algorithm AFEA as
follows:

Step 1. Arrange all job successors SJ(v) according to the corresponding ma-
chine index.

Step 2. Arrange all job predecessors PJ(w) according to the corresponding ma-
chine index.

Step 3. Set machine k = 1.

Step 4. If on machine k, the condition rpy(,,) > rg;(,) + Psy(v) is valid, then goto
step 6, otherwise set k = k+ 1.
In the case of reentrancy, divide all operations processed on the same
machine into two groups and compare the values of IgIJl(in:) {rp ,(W)} and

g}?j; {r SI(v) T Psi(v) }

Step 5. If k < M, then goto step 4, otherwise goto step 7.
Step 6. Print: Infeasible move and Stop.
Step 7. Print: Feasible move and Stop.

Based on proposition 3.2, this algorithm examines the sequence of operations relating to
v and w on each individual machine. Consequently, a move is labelled ’infeasible’ as long
as an alternative path from v to w exists. Thus, this algorithm conducts a preliminary
feasibility test before a move is actually performed.

Generally, it is essential to alleviate computational burden in a complex metaheuristic
implementation. In this respect, excluding infeasible moves actually enables the investi-
gation of a broader solution space, without redirecting the search process. If, on the other
hand, a transformation algorithm potentially interrupts intensified examination in promis-
ing spaces, search process can hardly be controlled using integrated components such
as tabu list or fitness value. This will, however, reduce the effectiveness of metaheuris-
tics. The algorithms proposed here not only distinguishes feasible moves in advance, but
also preserves the original structure of metaheuristics by avoiding erratic transformations.
Compared to algorithm AMLAB, AFEA is solvable in only O(M) time, where M denotes
the total number of machines.

5 Conclusions

In this paper, we investigate the feasibility issue in a job shop environment involving
sequence dependent setup times and reentrancy. The properties presented are especially
applicable when constructing local search algorithms, such as tabu search and simulated
annealing. In order to preserve feasible solutions, a modified version of the standard
labelling algorithm is first presented. We also develop an algorithm which requires negli-
gible computing time and can directly exclude infeasible moves.

240

The 9th International Symposium on Operations Research and Its Applications

References

(1]

[2]

(3]

(4]

[5]

(6]

[7]

[8]

(91

(10]

C. Artigues and F. Buscaylet. A fast tabu search method for the job-shop problem with
sequence-dependent setup times. Proceedings of Metaheuristic International Conference,
Kyoto, Japan, 2003.

C. Artigues and P. Lopez and P. Ayache. Scheduling generation schemes for the job-shop
problem with sequence-dependent setup times: Dominance properties and computational
analysis. Annals of Operations Research, 138: 21-52, 2005.

I. Choi and D. Choi. A local search algorithm for jobs scheduling problems with alternative
operations and sequence-dependent setups. Computers and Industrial Engineering, 42: 43—
58, 2002.

W. Cheung, and H. Zhou. Using genetic algorithms and heuristics for job shop scheduling
with sequence-dependent setup times. Annals of Operations Research, 107: 65-81, 2001.

S. Dauzere-Péres and J. Paulli. An integrated approach for modelling and solving the gen-
eral multiprocessor job-shop scheduling problem using tabu search. Annals of Operations
Research, 70: 281-306, 1997.

S. Dauzere-Péres and W. Roux and J. Lasserre. Multi-resource shop scheduling with resource
flexibility. European Journal of Operational Research, 107: 289-305, 1998.

J. Gupta. Economic aspects of scheduling theory. Ph.D thesis, Texas Tech University, Lub-
bock, Texas, 1969.

M. Laguna. A heuristic for production scheduling and inventory control in the presence of
sequence-dependent setup times. IIE Transactions, 31: 125-134,1999.

E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem. Man-
agement Science, 42(6): 797-813, 1996.

E. Taillard. Parallel taboo search techniques for the job shop scheduling problem ORSA
Journal on Computing, 6: 108-117,1994.

