
A Linear Time Algorithm for Edge Searching
on 3-Cycle-Disjoint Graphs

Boting Yang Runtao Zhang Yi Cao

Department of Computer Science, University of Regina, Regina, Canada

Abstract The edge searching problem is to find the minimum number of searchers to capture an
intruder that is hiding on vertices or edges of a graph. A 3-cycle-disjoint graph is a connected graph
in which no pair of cycles share a vertex and every cycle has at most three vertices with degree
more than two. In this paper, we consider the edge searching problem on 3-cycle-disjoint graphs.
We propose a linear time algorithm to compute the edge search number and the optimal edge search
strategy of a 3-cycle-disjoint graph.

Keywords graph searching; edge searching; cycle-disjoint graphs

1 Introduction
The edge searching problem is to find the minimum number of searchers to capture an

intruder that is hiding on vertices or edges of a graph. There are other searching models
besides edge searching, but in this paper we only consider the edge searching problem.
For this reason, we will use “search” instead of “edge search” for simplicity.

Let G be a graph with no loops or multiple edges. Initially, all vertices and edges of
G are contaminated, which means an intruder can hide on any vertices or anywhere along
edges. The intruder is invisible to all searchers and can slide along a path that contains
no searcher at a great speed at any time. There are three actions for searchers: (1) place a
searcher on a vertex; (2) remove a searcher from a vertex; and (3) slide a searcher along
an edge from one endpoint to the other. An edge uv in G can be cleared in one of the
following two ways by a sliding action: (1) two searchers are located on vertex u, and
one of them slides along uv from u to v; or (2) a searcher is located on vertex u, where all
edges incident with u, other than uv, are already cleared, and the searcher slides from u
to v. A search strategy is a sequence of actions designed so that the final action leaves all
edges of G cleared. The minimum number of searchers required to clear G is called the
search number of G, denoted by s(G).

Megiddo et al. [5] showed that determining the search number of a graph is NP-hard.
The search number is closely related to the vertex separation. Ellis et al. [3] proposed an
algorithm to compute the vertex separation of a tree in O(n) time. Ellis and Markov [4]
gave an O(n logn) time algorithm to compute the vertex separation and the corresponding
optimal layout of a unicyclic graph.

Bodlaender and Kloks [1] gave a polynomial time algorithm for computing the path-
width of a graph with constant treewidth. Since the search number of a graph equals the

The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19–23, 2010
Copyright © 2010 ORSC & APORC, pp. 225–232



pathwidth of its 2-expansion [3], we know that the search number of a graph with constant
treewidth is polynomial time computable. However, the exponent in the running time of
this algorithm is very large. Even for a graph with treewidth two, it takes at least Ω(n11)
time. Yang et al. [6] improved Ellis and Markov’s algorithm [4] from O(n logn) to O(n)
for computing the vertex separation and the optimal layout of a unicyclic graph. They
showed how to compute the search number of a k-ary cycle-disjoint graph. They also
investigated approximation algorithms for edge searching on cycle-disjoint graphs.

All graphs in this paper are finite with no loops or multiple edges. A graph G is called
a cycle-disjoint graph (CDG) if it is connected and no pair of cycles in G share a vertex.
If every cycle of a CDG G has at most three vertices with degree more than two, then we
call G a 3-cycle-disjoint graph (3CDG). If a vertex or an edge is on a cycle of G, it is
called a cycle vertex or a cycle edge respectively.

The motivation of this paper is to find an efficient algorithm for computing the search
number of a graph with treewidth two. We have successfully found an O(n) time algo-
rithm for a unicyclic graph [6]. We now try to extend this algorithm to CDGs. However,
we will see that the necessary structural information of CDGs is much more complicated
than that of unicyclic graphs. In this paper, we extend the labeling method used in [3]
and propose a linear time algorithm to compute the search number and the optimal search
strategy of a 3-cycle-disjoint graph.

2 Structures of cycle-disjoint graphs
For two graphs G and H, the union of G and H, denoted by G∪H, is the graph with

vertex set V (G)∪V (H) and edge set E(G)∪E(H). If H is a small graph that consists of
only one or two edges, we may use G∪E(H) to represent G∪H.

A rooted CDG is a connected CDG with one vertex designated as the root of the graph.
Let G[r] be a rooted CDG with root r. We first define that each vertex of G[r] except r
is a descendant of r. For any edge uv that is not on a cycle, the graph G[r]− uv has two
connected components. If u = r or u and r are in the same component, then we say that v
is a child of u, and each vertex that is in the same component as v is called a descendant
of u. Note that there is no parent-child relationship among vertices in the same cycle. If v
is the child of u, then we orient this edge with the direction from u to v and the oriented
edge is denoted by (u,v). For any cycle v1v2 . . .vkv1 in G[r], if v1 has an incoming edge
(u,v1) in G[r] or v1 = r, then v1 is referred to as the entrance-vertex of the cycle. For any
vertex v of G[r], the subgraph induced by v and all its descendant vertices is called the
vertex-branch of v, denoted by G[v]. G[r] can be considered as a vertex-branch of r. For
any directed edge (u,v) of G[r], let Gv be the connected component of G[r]− (u,v) that
contains v. The graph Gv∪{(u,v)} is called the edge-branch of the directed edge (u,v),
denoted by G[uv]. We also say that G[uv] is an edge-branch of u. Edge-branch is only
defined for non-cycle edges since only these edges are oriented.

In our labeling process, we assign proper labels to all vertices, non-cycle edges and
cycles of a rooted CDG G[r]. The label of a vertex v, non-cycle edge e or cycle C in
G[r] records the necessary structural information of G[v], G[e] or G[C], respectively. Intu-
itively, a label is a sequence of elements (st1

1 ,s
t2
2 , . . .s

tm
m ), where each element sti

i consists
of a positive integer si and a superscript ti, where 0 ≤ ti ≤ 5. Let G1 be G[v] (similarly,
G[e] or G[C]) and s1 be the search number of G1. If G1 has two edge disjoint subgraphs

226 The 9th International Symposium on Operations Research and Its Applications



Gi+1

Ci

z  1  2  z  

x  y  
x  

x  y  

y  

2  

1  2  

1  

z  

1 2eeGi+1

iv
e1 e2

Gi+1

Ci

z  1  2  z  

x  y  
x  

x  y  

y  

2  

1  2  

1  

z  
e1

X Y

Ci

z  1  2  z  

x  y  
x  

x  y  

y  

2  

1  2  

1  

z  

Gi+1

X Y

Ci

z  1  2  z  

x  y  
x  

x  y  

y  

2  

1  2  

1  

z  
Gi+1

1e

e2

Type 1 Type 3Type 2

Type 4 Type 5

Figure 1: five typical critical structures of Gi

(they may share a vertex) such that each of them has search number s(G1), then we say
G1 is critical and G1 must be one of the five typical structures illustrated in Figure 1 and
t1 indicates which structure it is. If G1 is not critical, then we say G1 is non-critical and
t1 = 0. When G1 is critical, according to its type of structure, we can obtain a correspond-
ing reduced graph G2 by deleting some vertices from G1. s2 is the search number of G2
and t2 indicates the structure of G2. Continue this procedure until the reduced graph is
non-critical or empty. The precise definition of a label is given as follows.

Definition 1. Let G[r] be a rooted 3CDG, the label of a vertex v (resp. non-cycle edge
e or cycle C) in G[r], denoted by L(v) (resp. L(e) or L(C)), is defined as a sequence of
elements (st1

1 ,s
t2
2 , . . .s

tm
m ). Each element sti

i consists of a positive integer si and a superscript
ti, where 0 ≤ ti ≤ 5. If ti = 0, we call sti

i a non-critical element; otherwise, we call it a
si-critical element of type-ti. The value of sti

i , denoted by |sti
i |, is the positive integer si.

The value of L(v) (resp. L(e) or L(C)), denoted by |L(v)| (resp. |L(e)| or |L(C)|), is the
value of its first element s1. L(v) (resp. L(e) or L(C)) satisfies the following conditions.

1. s1 > s2 > .. . > sm and only the last element stm
m can be non-critical.

2. G1 is G[v] (resp. G[e] or G[C]), and for 2≤ i≤m, Gi is defined as a graph obtained from Gi−1 according
to ti−1, see condition 3 for details.

3. If m > 1, then for i = 1,2, . . . ,m−1, we have si = s(Gi), ti > 0 and

(a) if ti = 1, there exists a non-cycle vertex vi in Gi and vi has two outgoing edges e1 and e2 such
that s(G[e1]) = s(G[e2]) = si. Gi+1 is defined as the graph obtained by deleting all the vertices of
G[vi] except vi from Gi.

A Linear Time Algorithm for Edge Searching on 3-Cycle-Disjoint Graphs 227



(b) if 2≤ ti ≤ 5, there exists a cycle Ci = zz1x1xx2y1yy2z2z (see Figure 1) in Gi. Let z be the entrance-
vertex of Ci, let X be G[x]∪{xx1,xx2}, Y be G[y]∪{yy1,yy2}, and Z be G[z]∪{zz1,zz2}. Assume
s(X)≥ s(Y ), then we have

• if ti = 2, z has two outgoing edges e1 and e2 such that s(G[e1]) = s(G[e2]) = si. Gi+1 is
defined as the graph obtained by deleting all vertices of G[Ci] except z from Gi.

• if ti = 3, s(X ∪Y ∪{x2y1}) = si and z has one outgoing edges e1 such that s(G[e1]) = si.
Gi+1 is defined as the graph obtained by deleting all vertices of G[Ci] except z from Gi.

• if ti = 4, x has two outgoing edges e1 and e2 such that s(G[e1]) = s(G[e2]) = si. Gi+1 is
defined as the graph obtained by deleting all the vertices of G[x] except x from Gi.

• if ti = 5, s(X) = s(Y ) = si. Gi+1 is defined as the graph obtained by deleting all vertices of
G[x] except x and all the vertices of G[y] except y from Gi.

4. s(Gm) = sm, 0≤ tm ≤ 3 and

(a) if tm = 1, L must be the label of a vertex v, and v has two outgoing edges e1 and e2 such that
s(G[e1]) = s(G[e2]) = sm.

(b) if 2 ≤ tm ≤ 3, L must be the label of a cycle C = zz1x1xx2y1yy2z2z (see Figure 1). Let z be the
entrance-vertex of C, let X be G[x]∪{xx1,xx2}, Y be G[y]∪{yy1,yy2}, and Z be G[z]∪{zz1,zz2}.
Assume s(X)≥ s(Y ), then we have

• if ti = 2, z has two outgoing edges e1 and e2 such that s(G[e1]) = s(G[e2]) = sm.
• if ti = 3, s(X ∪Y ∪{x2y1}) = sm and z has one outgoing edges e1 such that s(G[e1]) = sm.

For the first element st1
1 of L(v) (resp. L(e) or L(C)), if t1 > 0, G[v] (resp. G[e] or

G[C]) is said to be s1-critical of type-t1, and the corresponding vertex v1 or cycle C1 is
called the s1-critical vertex or s1-critical cycle in G[v] (resp. G[e] or G[C]).

3 Linear time algorithm
Let S be a monotonic search strategy for a graph G and v be a vertex in G. During

the procedure of performing S on G, if a searcher is placed on v and this searcher is never
removed from v until G is cleared, then we say that S ends at v; if a searcher is placed
on v in the first action of S and this searcher will never been removed from v until all the
edges incident with v are cleared, then we say that S starts from v.

For simplicity, we will use a normalized 3CDG as the input of our algorithm. For
each cycle C in a 3CDG, let x, y and z be the three vertices with degree more than 2. Note
that there may not be three vertices each of which has degree more than 2 and in this case,
we will choose the degree-two cycle vertex. Recall that there are at least 3 vertices in
each cycle since we require that all the graphs in this paper are finite without loops and
multiple edges. Replace each of x ∼ y, y ∼ z and z ∼ x by a path of length three such
that C = zz1x1xx2y1yy2z2z (see Figure 2). This procedure takes O(n) time. Notice that the
search number of the normalized 3CDG equals the search number of the original graph.

The following algorithm SEARCHNUMBER-3CDG computes the labels of vertices,
non-cycle edges and cycles in a rooted 3CDG G[r] by the labeling method. We can
construct the corresponding optimal search strategy based on these labels.
Algorithm SEARCHNUMBER-3CDG(G[r])
Input: A rooted 3CDG G[r].
Output: Labels of all vertices, cycles and non-cycle edges.

1. Assign label (00) to each leaf (except r if r is also a leaf), (10) to each pendant edge and (20) to each
pendant cycle in G[r].

2. If r is labeled, then return labels of all vertices, cycles and non-cycle edges in G[r].

3. - For each vertex v whose all out-going edges have been labeled, compute the label L(v).

228 The 9th International Symposium on Operations Research and Its Applications



x  y  

G[z]  

G[x]  G[y]  

z  

x  y  

G[z]  

G[x]  G[y]  

z  

x  

x  y  

y  

2  z  z  1  

2  

1  2  

1  

Figure 2: normalization of 3CDG

- For each cycle C in which all the vertices with degree more than two have been labeled, compute
the label L(C).

- For each non-cycle edge (u,v), if v is on a labeled cycle or if v is a labeled non-cycle vertex, then
compute the label L(uv).

- Go to Step 2.

We now consider how to compute the label of a vertex v when the labels of all its
outgoing edges are known. Suppose v has d children, v1, . . . ,vd . For 1≤ i≤ d, let L(vvi)

be the label of (v,vi) that contains mi elements. For 1≤ j ≤ mi, s
t j,i
j,i is the j-th element in

L(vvi). Here we use additional subscripts in s j and t j to indicate whose label it belongs to,
i.e., L(vvi) = (s

t1,i
1,i ,s

t2,i
2,i , . . .s

tmi ,i
mi,i). Then we have a graph Gmi,i that is defined in Definition 1,

where G[vvi] and Gmi,i correspond to G1 and Gmi respectively. Let G0 be the union of all
Gmi,i, for 1 ≤ i ≤ d. Let L0 be a multiset that contains all non-critical elements of each
L(vvi), 1 ≤ i ≤ d. We can compute the label of v in G0[v], denoted by Lv, from L0 (we
omit the details due to the space limit). After obtaining the label Lv of v in G0[v], we
merge Lv with all critical elements of L(vvi), for 1≤ i≤ d, which can be done by function
MERGELABEL-VERTEX. The output of this function is the label of v in G[r].
Function MERGELABEL-VERTEX(L1,L2, . . . ,Ld ,Lv)
Input: L1,L2, . . . ,Ld and Lv, where Li is the label of the i-th outgoing edge of v, for 1≤ i≤ d, and Lv is the label
of v in G0[v] that contains only one element.
Output: The label of v in G[r].

1. Set α ← the only element of Lv.

2. Let w be the value of the largest repeated critical elements in the labels L1,L2, . . . ,Ld .
/* Two critical elements are repeated if they have the same value */

3. if |α|< w+1, then α = (w+1)0.

4. Let L be a sequence containing all the critical elements of L1,L2, . . . ,Ld with value larger than or equal
to |α|.

5. Set h← the value of the last element in L;
if h > |α| then return L(v)◦ (α);

else update L by deleting its last element;
Set α ← (|α|+1)0;
Go to Step 5.

We now consider how to compute the label of a cycle C when we know the labels of
all the three cycle vertices with degree more than 2.

Let C = zz1x1xx2y1yy2z2z be a cycle in a rooted 3CDG G[r] and z be the entrance-
vertex of C. Suppose L(x), L(y) and L(z) are the labels of x, y and z respectively. Let X

A Linear Time Algorithm for Edge Searching on 3-Cycle-Disjoint Graphs 229



be G[x]∪{xx1,xx2}, Y be G[y]∪{yy1,yy2}, and Z be G[z]∪{zz1,zz2}. By using function
MERGELABEL-VERTEX to merge L(x) (resp. L(y) or L(z)) with (11), we can obtain
the label of x (resp. y or z) in X [x] (resp. Y [y] or Z[z]), denoted by Lx (resp. Ly or Lz).
Lx = (s

t1,x
1,x ,s

t2,x
2,x , . . .s

tmx ,x
mx,x). Then we have a graph Gmx,x that is defined in Definition 1, where

X [x] and Gmx,x correspond to G1 and Gmx respectively. Similarly, we have Gmy,y and Gmz,z.
Let G0 = Gmx,x ∪Gmy,y ∪Gmz,z ∪C. We can compute the label of C in G0[z], denoted by

LC, from stmx ,x
mx,x ,s

tmy,y
my,y ,s

tmz,z
mz,z (we omit the details due to the space limit). After obtaining

the label LC of C in G0[z], we will use the following function MERGELABEL-CYCLE to
merge LC with the three labels Lx−aX , Ly−aY and Lz−aZ . The output of this function
is the label of C in G[r].
Function MERGELABEL-CYCLE(Lx,Ly,Lz,LC)
Input: Lx,Ly,Lz and LC , where Lx (resp. Ly or Lz) is the label of x (resp. y or z) in X [x] (resp. Y [y] or Z[z])
without the last element and LC is the label of C in G0[z].
Output: The label of C in G[r].

1. Set α ← the first element of LC , q← |LC|.
2. Let w be the value of the largest repeated critical element of the input labels Lx,Ly and Lz. /* Two critical

elements are repeated if they have the same value */

3. if |α|< w+1, then α = (w+1)0.

4. Let L be a sequence containing all the critical elements of Lx,Ly and Lz with value larger than or equal
to |α|.

5. Set h← the value of the last element in L;
if h > |α| then if |α|= q then return L(v)◦LC;

else return L(v)◦ (α);
else update L by deleting its last element;

Set α ← (|α|+1)0;
Go to Step 5.

Let G[r] be a rooted 3CDG and (u,v) be a non-cycle edge in G[r]. If v is on a labeled
cycle or v is a labeled non-cycle vertex, then function EDGELABEL computes the label of
(u,v) in G[r], denoted by L(uv).
Function EDGELABEL(G[uv])
Input: The label of v, denoted by L.
Output: The label of the edge (u,v).

1. Let p be the last element of L.

2. if p is not critical, then return L.

3. if p is critical with value larger than 1, then return L◦ (10).

4. if p is critical with value 1,
then q is the smallest positive integer such that no element in L has value q;

Update L by deleting all the elements with value less than q;
return L◦ (q0).

4 Correctness and time complexity
Lemma 1. Function MERGELABEL-VERTEX outputs the label of a vertex in G[r].

Based on Lemma 1 and the discussion in Section 3, we have the following lemmas.

Lemma 2. Function MERGELABEL-CYCLE outputs the label of a cycle in G[r].

Lemma 3. Function EDGELABEL outputs the label of a non-cycle edge in G[r].

230 The 9th International Symposium on Operations Research and Its Applications



From Lemmas 1, 2 and 3, SEARCHNUMBER-3CDG can compute the labels of each
vertex, cycle and non-cycle edge. In the rest of this section we will analyze the time
complexity of this algorithm.

We introduce a data structure used in [3] that compresses the label representation.
For a sub-list of value consecutive critical elements in a label, we use an interval to
represent them. For example, the label (9t1 ,8t2 ,7t3 ,6t4 ,5t5 ,3t6 ,2t7 ,10) is represented as
((9,5),(3,2),10). Note that the non-critical element is not put into any interval. The
benefit of this representation is to improve the label merging operation. For example, if
we want to merge label (9t1 ,8t2 ,7t3 ,6t4 ,5t5 ,3t6 ,2t7 ,10) with (50), we can obtain the result
(100) in one step by using this compressed representation.

Lemma 4. The time complexity of function EDGELABEL is O(1) with the compressed
label representation.

Lemma 5. The time complexity of function MERGELABEL-VERTEX is O(|L2|+ d),
where L2 is the second largest label among L1,L2, . . . ,Ld .

Proof. Lines 1 and 3 take constant time. Line 5 also takes O(1) time by using the same
technique as in function EDGELABEL. We now consider the time complexity of Lines 2
and 4.

For 1 ≤ i ≤ d, suppose that |L1| ≥ |L2| ≥ |Li| for 3 ≤ i ≤ d. In order to achieve
O(|L2|+d) time for MERGELABEL-VERTEX, we first merge part of L1 with all the other
labels and then merge the result with the rest of L1. Replace Line 2 by the following
fragment.

2.1 Set w← 0, and remove elements with value less than or equal to |L2| from L1 and put them into Y .

2.2 for i = 2 to d, do
for j = 1 to mi, do
/* Li contains mi critical elements and let s j be the j-th largest one in Li. */

if no element in Y has value |s j|,
then put s j into Y ;
else if |s j|> w, then w = |s j|;

break the inner for loop;

2.3 Delete all elements with value less than or equal to w from Y .

2.4 Represent Y by the compressed form.

Line 2.1 takes O(|L2|) time. In Line 2.2, each time when we check an element, we
either add it into Y or finish checking the label that contains it. The size of Y is at most
|L2| and there are d labels. Thus, Line 2.2 takes O(|L2|+ d) time and Lines 2.3 and 2.4
take O(|L2|) time. Hence, the time complexity of Line 2 is O(|L2|+d).

After the execution of this fragment, w is the value of the largest repeated critical
elements in L1,L2, . . . ,Ld and Y contains all the critical elements with value less than or
equal to |L2| and larger than w (if there is no such element, Y is empty). Consider the
following two cases regarding the value of α after Line 3.

CASE 1. |α|> |L2|+1. Then critical elements with value larger than or equal to |α|
can only appear in L1. Let L be L1 and Line 4 takes O(1) time.

CASE 2: |α| ≤ |L2|+1. Let L = L1 ◦Y and delete all elements in L with value smaller
than |α|. Line 4 takes O(|L2|) time.

Therefore, the time complexity of MERGELABEL-VERTEX is O(|L2|+d).

A Linear Time Algorithm for Edge Searching on 3-Cycle-Disjoint Graphs 231



Similarly to Lemma 5, we have the following lemma.

Lemma 6. The time complexity of function MERGELABEL-CYCLE is O(β ), where β is
the value of the second largest label among Lx,Ly and Lz.

Lemma 7. If a function f (n) is defined on the positive integers by the recurrence equation

f (n) =





c, n = 1,2,
f (m1)+ c, k = 1,n≥ 3,
maxM{∑k

i=1 f (mi)+ c(dlogm2e+ k)}, k ≥ 2,n≥ 3,

where M = {(m1,m2, . . . ,mk) : m1 ≥ m2 ≥ ·· ·mk ≥ 1,and ∑k
i=1 mi = n−2}, and c≥ 1 is

a constant, then f (n) is O(n).

In algorithm SEARCHNUMBER-3CDG, we use f (G[v]) to denote the time used to
compute the label of vertex v and use f (G[C]) to denote the time used to compute the
label of cycle C. Then we have

f (G[v]) = f (G[vv1])+ f (G[vv2])+ · · ·+ f (G[vvd ])+O(s(G[vv2])+d),

where v has d edge-branches and G[vv2] is the second largest edge-branch according to
their search numbers. We also have

f (G[C]) = f (G[x])+ f (G[y])+ f (G[z])+O(s(G∗)),

where x, y and z are the three vertices on C with degree more than 2, and G∗ is one of
G[x], G[y] and G[z] that has the second largest search number.

Theorem 8 follows from Lemma 7.

Theorem 8. For a rooted 3CDG G[r], algorithm SEARCHNUMBER-3CDG computes
the labels of all vertices, cycles and non-cycle edges in O(n) time.

Finally, we can construct an optimal search strategy in linear time as well. We omit
the details due to the space limit.

Theorem 9. Let G[r] be a rooted 3CDG. If the labels of all vertices, cycles and non-cycle
edges are known, then we can construct an optimal search strategy for G in O(n) time.

References
[1] H. Bodlaender, T. Kloks, Efficient and Constructive Algorithms for the Pathwidth and

Treewidth of Graphs. J. Algorithms 21 (1996) 358–402.
[2] H. Bodlaender, F. Fomin, Approximation of pathwidth of outerplanar graphs. J. Algorithms

43 (2002) 190–200.
[3] J. Ellis, I. Sudborough and J. Turner, The vertex separation and search number of a graph,

Information and Computation 113 (1994) 50–79.
[4] J. Ellis and M. Markov, Computing the vertex separation of unicyclic graphs, Information and

Computation 192 (2004) 123–161.
[5] N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadimitriou, The complexity

of searching a graph, Journal of ACM 35 (1988) 18–44.
[6] B. Yang, R. Zhang and Y. Cao, Searching cycle-disjoint graphs, Proceedings of the 1st Inter-

national Conference on Combinatorial Optimization and Applications (COCOA’07), Lecture
Notes in Computer Science, Vol. 4616, Springer-Verlag, Berlin, pp.32–43, 2007.

232 The 9th International Symposium on Operations Research and Its Applications




