
Constant Time Generation of Trees with Degree
Bounds

Bingbing Zhuang∗ Hiroshi Nagamochi†

Graduate School of Informatics, Kyoto University

Abstract Given a number n of vertices, a lower bound d on the diameter, and a capacity function
∆(k) ≥ 2, k = 0,1, . . . ,bn/2c, we consider the problem of enumerating all unrooted trees T with
exactly n vertices and a diameter at least d such that the degree of each vertex with distance k
from the center of T is at most ∆(k). We give an algorithm that generates all such trees without
duplication in O(1)-time delay per output in the worst case using O(n) space.

1 Introduction
The problem of enumerating (i.e., listing) all graphs with bounded size is one of the

most fundamental issues in graph theory. Time delay of an enumeration algorithm is a
time bound between two consecutive outputs. Enumerating graphs with a polynomial
time delay would be rather easy since we can examine the whole structure of the current
graph anytime. However, algorithms with a constant time delay in the worst case is a hard
target to achieve without a full understanding of the graphs to be enumerated, since not
only the difference between two consecutive outputs is required to be O(1), but also any
operation for examining symmetry and identifying the edges/vertices to be modified to
get the next output needs to be executable in O(1) time. One of the common ideas behind
efficient enumeration algorithms (e.g., [6, 5, 8]) is to define a unique representation for
each graph in a graph class as its “parent," which induces a rooted tree that connects all
graphs in the class, called the family tree F , where each node in F corresponds to a graph
in the class. Then all graphs in the class will be enumerated one by one according to the
depth-first traversal of the family tree F . However, the crucial point to attain an O(1)-
time delay is to find a “good" parent which enables us to generate each of the children
from a graph in O(1) time.

Enumeration of restricted graphs or graphs with configurations has many applica-
tions in various fields such as machine learning and chemoinformatics. Enumeration
of trees and outerplanar graphs can be used for many purposes including the inference
of structures of chemical compounds [2, 4]. For example, the alkane molecular family
{CnH2n+2 | n ≥ 1} is one of the most fundamental classes of tree-like compounds, where
each alkane contains only single bonds (either C-C or C-H bonds). Aringhieri et al. [1]
∗zbb@amp.i.kyoto-u.ac.jp
†nag@amp.i.kyoto-u.ac.jp

The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19–23, 2010
Copyright © 2010 ORSC & APORC, pp. 183–194

designed an algorithm that generates all alkane isomers for a given n in O(n4)-time delay
on average.

Our research group has been developing algorithms for enumerating chemical graphs
that satisfy given various constraints [2, 3, 4]. We have designed efficient branch-and-
bound algorithms for enumerating tree-like chemical graphs [2, 4], which are based on
the tree enumeration algorithm [6], and implementations of these algorithms are available
on our web server1. Our algorithms can enumerate all alkane isomer in O(n2)-time delay
on average [2], improving the O(n4)-time delay [1].

Several algorithms to generate all trees with n vertices without repetition have been
already known. The best algorithm [9] runs in time proportional to the number of trees,
i.e., the time delay is O(1) on average. Nakano and Uno [7] gave an O(1)-time delay
algorithm to generate all trees with exactly n vertices and diameter d without repetition.
However, for applications to chemical graph enumerations, we wish to use an efficient
algorithm to generate trees with bounded degrees, because each vertex corresponding to
an atom in a chemical graph has a small and fixed degree.

In this paper, given a number n of vertices, a lower bound d on the diameter, and a
capacity function ∆(k)≥ 2, k = 0,1, . . . ,bn/2c, we consider the problem of enumerating
all unrooted trees T with exactly n vertices and a diameter at least d such that the degree
of each vertex with distance k from the center of T is at most ∆(k). We give an algorithm
that generates all such trees without duplication in O(1)-time delay per output in the worst
case using O(n) space. For example, alkane isomers CnH2n+2 can be regarded as unrooted
trees with exactly n carbon atoms (neglecting hydrogen atoms) such that the degree of
each vertex is at most four. Hence our result implies that all alkane isomers CnH2n+2
can be generated in O(1)-time delay in the worst case without duplication, which is an
improvement over the O(n2)-time delay on average [2].

2 Preliminaries
For two sequences A and B over a set of elements for which a total order is defined,

let A > B mean that A is lexicographically larger then B, and let A≥ B mean that A > B or
A = B. Let A A B mean that B is a prefix of A and A 6= B, and let A� B mean that A > B
but B is not a prefix of A. Let Aw B mean that A A B or A = B, i.e., B is a prefix of A.

A graph stands for a simple undirected graph, which is denoted by a pair G = (V,E)
of a vertex set V and an edge set E. The set of vertices and the set of edges of a given
graph G are denoted by V (G) and E(G), respectively. The degree deg(v;G) of a vertex
v in a graph G is the number of neighbours of v in G. A path is a sequence of distinct
vertices (v0,v1, . . . ,vk) such that (vi−1,vi) is an edge for i = 1,2, . . . ,k. The length of a
path is the number of edges in the path. The distance between a pair of vertices u and v
is the minimum length of a path between u and v. The diameter of G is the maximum
distance between two vertices in G.

Unrooted Trees A tree (unrooted tree) is a connected graph without cycles. For two
vertices u and v in a tree, let PT (u,v) be the unique path that connects u and v in T . In an
unrooted tree, there are at most two vertices the maximum distance from which to other
vertices is minimized. If such a vertex v is unique (i.e., the diameter of T is even), then

1http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/

184 The 9th International Symposium on Operations Research and Its Applications

we call v the center of T , and define the depth of a vertex u to be the distance from u to
the center. On the other hand, if there are two such vertices v and v′ (i.e., the diameter
of T is odd), then we call the (v,v′) the center of T , and define the depth dep(u;T) of a
vertex u to be the distance from u to the endvertices of the center, i.e., the length of the
path from u to the center (v,v′) including the edge (v,v′).

Let ∆ : [0,bn/2c]→ [2,n−1] denote a capacity function, where ∆(k) is an upper bound
on the degree of a vertex v with depth k in an unrooted tree. An unrooted tree T is called
∆-bounded if

2≤ deg(r;T)≤ ∆(0) and deg(v;T)≤ ∆(dep(v;T)) ∀ v ∈V (T)−{r}. (1)

In this paper, we show the following result.

Theorem 1.
For an integers n≥ 3 and d ≤ n, and a capacity function ∆ : [0,bn/2c]→ [2,n−1], all ∆-
bounded unrooted trees with exactly n vertices and a diameter at least d can be generated
in O(1)-time delay in the worst case using O(n) space after an O(n)-time initialization.

Let Todd(n,∆) (resp., Teven(n,∆)) denote the set of all ∆-bounded unrooted trees with
exactly n vertices and an odd (resp., even) diameter.

depth=0
r

depth=5

depth=4

depth=3

depth=2

depth=1

depth=5

depth=4

depth=3

depth=2

depth=1

(a) (b)

centerv

l2l1

c2c1‘v

rml(T)

=lml(T) =lml(T(c))1

Figure 1: (a) A tree T ′ with an odd diameter; (b) the tree T obtained from T ′ by subdivid-
ing the center (v,v′) with root r.

Unrooted Rooted Trees We represent unrooted trees as “rooted trees." A rooted tree is
a tree with one vertex r designated as its root. If PT (r,v) has exactly k edges then we say
that the depth dep(v;T) of v is k. The parent of v 6= r is its neighbour on PT (r,v), and the
ancestors of v 6= r are the vertices on PT (r,v). The parent of the root r and the ancestors
of r are not defined. We say that if v is the parent of u then u is a child of v, and if v is an
ancestor of u then u is a descendant of v. A leaf is a vertex that has no child. Note that
PT (r,v) denotes the set of all ancestors of a vertex v in a rooted tree T , where v ∈ PT (r,v).

Now we show how to convert the problem of generating unrooted trees in Todd(n,∆)∪
Teven(n,∆) to a problem of generating rooted trees in some classes. Given a capacity
function ∆ : [0,bn/2c]→ [2,n−1], let us call a rooted tree T ∆-bounded if it satisfies (1).

We call an rooted tree T centerized if T has an even diameter and r is the center
of T , i.e., there are two children c1 and c2 of the root r such that the subtrees Ti at ci,

Constant Time Generation of Trees with Degree Bounds 185

i = 1,2 attain dep(T1) = dep(T2) = dep(T)− 1. Let RT (n,∆) denote the set of all ∆-
bounded centerized trees. Let T +

odd(n,∆) denote the set of trees obtained from each tree
T ∈ Todd(n,∆) by subdividing the center (v,v′) with a root r (see Fig. 1(a)-(b)). It is a
simple matter to see by definition that the next lemma holds.

Lemma 2.
(i) For a given integer n≥ 3, Teven(n,∆) is given by RT (n,∆).
(ii) For a given integer n≥ 2, T +

odd(n,∆) is given by RT (n+1,∆), where ∆(0) = 2.

In what follows, we consider only how to generate rooted trees in RT (n,∆).

Ordered Trees Rooted trees are then represented as “ordered trees." An ordered tree
(o-tree, for short) is a rooted tree with a left-to-right ordering specified for the children of
each vertex. For an o-tree T and a vertex in T , let T (v) denote the ordered subtree induced
from T by the set of v and descendants of v, preserving the left-to-right ordering for the
children of each vertex.

For an o-tree T ′, a leaf v in T ′ is called the leftmost (resp., rightmost) leaf if v is a
descendant of the leftmost (resp., rightmost) child of any ancestor of v in T ′. Let lml(T ′)
(resp., rml(T ′)) denote the leftmost (resp., rightmost) leaf in an o-tree T ′. See Fig. 1(b).

Let T be an o-tree with n vertices, and (v1,v2, . . . ,vn) be the list of the vertices of T in
preorder, i.e., vertices are indexed in the order of DFS. For two vertices u = vi and v = v j,
we write u >T v if i < j. Consider two vertices u = vi and v = v j, i ≤ j in T . Let [u,v]
denote the set of all vertices vi′ with i ≤ i′ ≤ j, and let T [u,v] denote the graph induced
from T by the vertex set [u,v]. Also let lca(u,v) denote the least common ancestor of u
and v in T . Let lcaL(u,v) denote the child w of lca(u,v) such that w ∈ PT (r,u), where we
let lcaL(u,v) = u if lca(u,v) = u. Similarly, lcaR(u,v) denotes the child w′ of lca(u,v) such
that w′ ∈ PT (r,u), where we let lcaR(u,v) = v if lca(u,v) = v. We denote the children of
the root r in an o-tree by c1,c2, . . . ,cp from left to right. Let OT (T) denote the set of all
o-trees obtained from a rooted tree T .

3 Left-heavy Trees
Since all o-trees in OT (T) of the same tree T are isomorphic, we choose a particular

o-tree as the representative of T . For this, we use “left-heavy trees" [7]. For an o-tree T ′,
we define the depth sequence L(T ′) to be

L(T ′) = [dep(v1;T ′),dep(v2;T ′), . . . ,dep(vn;T ′)].

If L(T ′) > L(T ′′) for two ordered trees T ′ and T ′′, then we say that L(T ′) is heav-
ier than L(T ′′). An o-tree T ′ ∈ OT (T) of a rooted tree T is called left-heavy tree if
L(T ′) ≥ L(T ′′) holds for all o-trees T ′′ ∈ OT (T). For two vertices vi and v j, i ≤ j, let
Li, j(T ′) = [dep(vi;T ′),dep(vi+1;T ′), . . . ,dep(v j;T ′)]. It is known that left-heavy trees
can be characterized as follows.

Lemma 3.
[7] An o-tree T ′ ∈ OT (T) is the left-heavy tree of a rooted tree T if and only if, for a
non-root vertex v and its immediate right sibling v′ of v (if any) in an o-tree T ′, it holds
L(T (v))≥ L(T (v′)).

186 The 9th International Symposium on Operations Research and Its Applications

For each rooted tree T , a left-heavy tree in OT (T) is unique up to the isomorphism
with respect to the root. In what follows, we assume that unordered rooted trees are
represented by left-heavy trees.

By definition of left-heavy trees, we can easily observe that the following inequality
on depth also holds.
Lemma 4.
For a non-root vertex v and its immediate right sibling v′ of v (if any) in a left-heavy tree
T , it holds dep(T (v))≥ dep(T (v′)).

In particular, dep(T (c1)) = dep(T (c1)) ≥ ·· · ≥ dep(T (cp)) holds for the children
c1,c2, . . . ,cp of the root r in a left-heavy and ceterized tree T . We call a left-heavy and
ceterized T distinguished if, for each i = 1,2, the number of leaves with the maximum
depth in T (ci) is 1 (i.e., no other leaf than lml(T (ci)) attains dep(T (ci))).

We consider how to add a new leaf along the rightmost path PT (r, rml(T)) of a left-
heavy tree T so that the resulting o-tree remains left-heavy. This problem has been solved
by Uno and Nakano [6]. We here use another solution “competitors" proposed in our
companion paper [10], since “competitors" are easier to handle the case where some left
part of a left-heavy tree may change.

For an o-tree T and a vertex u in T , let T +(u,v) denote the o-tree obtained from
T by appending a new vertex v at u as the rightmost child of u. A vertex u in a left-
heavy tree T is called valid if T +(u,v) remains left-heavy. Let v be a vertex in an o-tree
T . For a descendant vi of v in T , we define the pre-sequence ps(v,vi) of vi to v to be
Lk,i−1(G) = [dep(vk;T),dep(vk+1;T), . . . ,dep(vi−1;T)] for the child vk of v such that vk
is an ancestor of vi. For a vertex vi and a vertex v j with j < i incomparable vi, we call
v j pre-identical to vi if ps(v,v j) = ps(v,vi) holds, and lcaL(v j,vi) is the immediate right
sibling lcaR(v j,vi) for v = lca(v j,vi) [10]. We define the competitor of a vertex vi to be
the vertex v j pre-identical to vi which has the smallest index j (< i) among all vertices
pre-identical to vi. A vertex vi has no competitor if no vertex v j, j < i is pre-identical to
vi.
Lemma 5.
[10] Let T be a left-heavy tree, let u0,u1, . . . ,uq(= rml(T)) denote the rightmost path of T .
Then there is an index h∗ such that a vertex ui is valid if and only if 0≤ i≤ h∗. Moreover
such an index h∗ is determined as follows.
(i) uq has no competitor: Then h∗ = q.
(ii) uq has a competitor v j: Let vh be the parent of the vertex v j+1 next to v j in T . Then
h∗ = dep(vh;T).

Let us call such a vertex vh∗ the lowest valid ancestor of uq in T . By maintaining
vertices {v1,v2, . . . ,vn} in an array and the current tree T in a linked data structure, we
can compute vh∗ from uq in O(1) time.

We review how to compute competitors. For each vertex vi, i= 1,2, . . . ,n in this order,
we can set the competitor of a vertex vi to be the vertex v j, j < i which satisfies one of the
next cases holds, where we also compute lca(v j,vi) and lcaR(v j,vi):

(a) i≥ 2 and the previous vertex vi−1 of vi has a competitor v j−1 and it holds lca(v j,vi) =
lca(v j−1,vi−1), where dep(vi−1;T) = dep(v j−1;T) holds: Then the competitor of vi is
given by v j. We set lca(v j,vi) := lca(v j−1,vi−1) and lcaR(v j,vi) := lcaR(v j−1,vi−1).

Constant Time Generation of Trees with Degree Bounds 187

(b) vi has no such previous vertex vi−1 in case (a), and vi has a left sibling v j: Then the
competitor of vi is given by v j. We set lca(v j,vi) to be the parent of vi and lcaR(v j,vi) := vi.

Lemma 6.
[10] In a left-heavy tree T , the competitor of vertex vi is correctly obtained in cases (a)
and (b), if any, if the competitors of all vertices vt , t < i have been obtained.

In case (a), whether lca(vi,v j) = lca(vi−1,v j−1) or not can be tested without knowing
the value of lca(vi,v j). For this, we use lca(vi−1,v j−1) and lcaR(vi−1,v j−1) as follows:
lca(vi,v j) = lca(vi−1,v j−1) if and only if j < h and dep(vh;T) > dep(vi;T) for vh =
lcaR(vi−1,v j−1). Hence we can determine the competitor of a new vertex v according to
cases (a) and (b) in O(1) time per operation of appending a new leaf.

4 Parent-trees of ∆-bounded Left-heavy Trees
In this section, we define the “parent-tree" of each left-heavy tree T in the class

RT (n,∆) of ∆-bounded and centerized trees with n vertices, where dep(T)−1= dep(T (c1))=
dep(T (c2)) holds. For ease of applications of the properties on left-heavy trees, we also
define the “parent-tree" of each left-heavy tree in RT (n−1,∆)∪RT (n−2,∆) with re-
spect to n so that the parent-child relationship over these classes forms a family tree F .
We will design an algorithm that visits all nodes in family tree F each in O(1)-time.
However, we output only trees in RT (n,∆) during the traversal of F .

For the leftmost and second leftmost children c1 and c2 of the root r in a left-heavy
tree T , let `i, i = 1,2 denote the leftmost leaf of the subtree T (ci) rooted at ci. We call
each vertex in PT (r, `1)∪PT (r, `2) a core vertex. Let vlast denote the non-core vertex with
the largest preporder index in T .

For an even n, let Pn−1 denote the o-tree obtained from a path with n− 1 vertices by
choosing its center as the root, and let Pn−1 + i be obtained from Pn−1 by adding a new
leaf at the ith vertex vi, i ∈ [0,n/2]. Let RT ([n,n− 2],∆) denote RT (n,∆)∪RT (n−
1,∆)∪RT (n−2,∆).

For an odd (resp., even) n, we define the parent-tree of a left-heavy tree T ∈RT ([n,n−
2],∆)−{Pn} (resp., T ∈RT ([n,n− 2],∆)−{Pn−1 + i | 0 ≤ i ≤ n/2}) with respect to n
as follows.

(1) If T ∈RT (n,∆)∪RT (n−1,∆), then the parent-tree P(T) of T is defined to be
the o-tree T−vlast obtained from T by removing vlast. For example, the parent-tree of T1
with n vertices (reps., T2 with n−1 vertices) is T2 (resp., T3) in Fig. 2. The inequalities in
Lemma 3 still hold in T −vlast, and hence P(T) = T −vlast remains left-heavy. Clearly
P(T) = T − vlast remains ∆-bounded.

(2) If T ∈RT (n− 2,∆), then the parent-tree P(T) of T is defined to be the o-tree
obtained from T by appending a new leaf to `i for each i = 1,2. For example, the parent-
tree of T3 with n− 2 vertices is T4 in Fig. 2. The inequalities in Lemma 3 still hold
in P(T) = (T +(`1,v))+ (`2,v′), since the leftmost paths in T (c1) and T (c2) extend.
T −vlast remains left-heavy. Also P(T) = (T +(`1,v))+(`2,v′) remains ∆-bounded by
∆(dep(`1;T)) = ∆(dep(`2;T))≥ 2.

Lemma 7.
For each left-heavy tree T ∈ RT ([n,n− 2],∆)− ({Pn}∪ {Pn−1 + i | 0 ≤ i ≤ n/2}), the

188 The 9th International Symposium on Operations Research and Its Applications

v10

v2

v6

v7

v3

v8

v12

v4

v11

v9

v5

v1

v14

v18

v17

v19v13

v16

v15

v24

v23

v20

v21

∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r= v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r= v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v1
∆(0)=3

∆(1)=3

∆(2)=2

∆(3)=3

∆(4)=2

∆(5)=2

r=

∆(6)=2

v22

(a) T (b) T (c) T

(d) T (e) T (f) T

1 2 3

4 5 6

c2c1 c2c1 c2c1

c2c1 c2c1 c2c1

l2l1 l2l1

l2l1 l2l1 l2l1

l2l1

vvlast

vvlast

vvlast

vvlastvvlast

vv

last

Figure 2: Examples of left-heavy trees for n = 24, where T1,T4 ∈ RT (n,∆), T2,T5 ∈
RT (n−1,∆), and T3,T6 ∈RT (n−2,∆), and Ti+1 is the parent-tree of Ti, i = 1,2, . . . ,5.

parent-tree P(T) with respect to n is a ∆-bounded left-heavy tree which belongs to
RT ([n,n−2],∆).

5 Generating Child-trees
A left-heavy tree T ′ is called a child-tree of a left-heavy tree T if T is the parent-

tree of T ′, where T ′ may not be ∆-bounded. A vertex v in T is called unsaturated if
deg(v;T) < ∆(dep(v;T)). In Sections 5.1 and 5.2, we first characterize the set of all
child-tree of a left-heavy tree T ∈RT ([n,n−2],∆). In Section 5.3, we next describe an
entire algorithm ENUMERATE for enumerating all left-heavy trees T ∈RT ([n,n−2],∆)
by a recursive procedure GEN of generating all child-trees of a given a left-heavy tree
T ∈RT ([n,n−2],∆).

5.1 Appending a Leaf to T ∈RT (n−1,∆)∪RT (n−2,∆)
Let T ∈RT (n− 1,∆)∪RT (n− 2,∆). By definition of parent-trees, any child-tree

T ′ of T has n or n− 1 vertices, and T is obtained from T ′ by removing the non-core
vertex vlast(T ′) with the largest index in T ′. Thus, T ′ is obtained from T by appending
a new leaf (u,v) so that T +(u,v) is left-heavy and ∆-bounded. We here consider when
T +(u,v) is left-heavy, i.e., (i) u is a valid vertex in T and (ii) v is the non-core vertex
vlast(T +(u,v)) with the largest index in T +(u,v).

We define the spine S(T) of a left-heavy tree T ∈RT (n− 1,∆)∪RT (n− 2,∆) as
the set of vertices u at which appending a new leaf (u,v) results in an o-tree T +(u,v)
such that v is the non-core vertex vlast(T +(u,v)) with the largest index in T +(u,v). By
definition of S(T), we observe the next.

Constant Time Generation of Trees with Degree Bounds 189

(a) (b)

b
v

a
v

rr

l2l1
l2l1

c2c1
pcc2c1

c3

vvlast

vvlast

S (T)

S(T)
S (T)

1

2

u
R

u
L

l
v

v

depth d*
v

u
R

l
v

v

u
L

depth d*
v

s11s4

s3
s10

s2
s9

s1
s8

s7

s6

s5

s4

s3

s2

s1

s5

s12

=s
k

Figure 3: (a) Spine S(T) = {s1,s2, . . . ,s5} in a tree T with vlast 6∈ V (T (c1)); (b) spine
S(T) = S1(T)∪S2(T) = {s1,s2, . . . ,s11} in a tree T with vlast ∈V (T (c1)).

Lemma 8.
For each left-heavy tree T ∈ RT (n− 1,∆)∪RT (n− 2,∆), the o-tree T ′ obtained by
appending a new leaf (u,v) is a child-tree of T if and only if u is a valid vertex in S(T).

We show how to find all valid vertices in S(T) in the following two cases.

Case-1: The non-core vertex vlast with the largest index in T does not belong to the
subtree T (c1): In this case, S(T) = (s1 = vlast,s2, . . . ,sm = r) is given as the path from
the last non-core vertex vlast to the root r. See Fig. 3(a). Since S(T) is the rightmost path
of T , all valid vertices in S(T) can be identified by the lowest valid ancestor vh∗ = si (1≤
i ≤ m) of vlast, and vh∗ can be computed in O(1) time in the same manner in Lemma 5
using the competitor of vlast.

Case-2: vlast belongs to the subtree T (c1) (i.e., r has only two children and the subtree
T (c2) is a path): Let va denote the lowest core vertex in T (c1) with deg(va)≥ 3, and let vb
be the vertex vb in T (c2) with dep(vb;T) = dep(va;T). See Fig. 3(b). Then S(T) consists
of two sequences S1(T) and S2(T), where S1(T) = (s1 = vlast,s2, . . . ,st = c1) is obtained
by visiting the path PT (vlast,c1) from vlast to c1, and S2(T) = (st+1 = vb,st+2, . . . ,sm =
r) by visiting PT (vb,r) from vb to r, where S1(T) is followed by S2(T) in S(T). We
easily see that all vertices in S2(T) are always valid. For the vertex sk = lca(`1,vlast), all
vertices sk,sk+1, . . . ,st ∈ S1(T) are also valid. The valid vertices in {s1,s2, . . . ,sk−1} can
be determined by applying Lemma 5 to the subtree T (sK). Thus the lowest valid ancestor
vh∗ = si (1≤ i≤ k−1) of vlast in T (sK) can be computed in O(1) time in the same way
using the competitor of vlast.

190 The 9th International Symposium on Operations Research and Its Applications

Let spn(v) denote the parent v′= si+1 ∈ S(T) of a vertex v= si ∈ S(T), where spn(r)=
/0.

5.2 Shortening Depth of T ∈RT (n,∆)
Let T ∈RT (n,∆) be a left-heavy tree. By definition of parent-trees, T has at most

one child-tree, which is given by T −{`1, `2}. Note that T −{`1, `2} can be a child-tree of
T only when T is distinguished, since the parent-tree of any tree T ∈RT (n−2,∆) with
respect to n is distinguished. In fact, for a distinguished left-heavy tree T ∈RT (n,∆),
T −{`1, `2} is a child-tree of T if and only if T −{`1, `2} is left-heavy. We show how to
examine the left-heaviness of T −{`1, `2} in O(1) time. By definition, we first observe
the following case.

Lemma 9.
Let T ∈RT (n,∆) be a distinguished left-heavy tree. If T ′ = T −{`1, `2} remains distin-
guished, then T ′ is left-heavy.

We next show how to check whether T can have a non-distinguished child-tree, i.e.,
whether the o-tree T −{`1, `2} remains left-heavy or not. Let X1 =V (T)−{r} and X2 =
V (T)− (V (T (c1)∪{r}). For each vertex v ∈ Xi, i = 1,2, we define statei(v) as follows.

We first define state1(v), v ∈ X1. For the leftmost leaf `1 = lml(T (c1)) of T (c1) and
a vertex v ∈ X1, let us denote uL = lcaL(`1,v) and uR = lcaR(`1,v) (see Fig. 3(b)). We
compare subtree T (uL) at uL and subtree T R

v = T [uR,v] in the following way. The depth
dep(T R

v) of T R
v is determined by its leftmost leaf `v = lml(T R

v). Hence the depth d∗v =
dep(`v;T) of `v in T is given by

d∗v = dep(lca(`1,v);T)+dep(T R
v)+1.

If T (c1) has a non-core vertex u′ <T `v with dep(u′;T) > d∗v or uR is not the second
leftmost child of lca(`1,v), then we let state1(v) = /0. Then the set of vertices u′ <T `v
with dep(u′;T)> d∗v consists of core vertices in T (c1); i.e., it is given by {u′ ∈ PT (r, `1) |
dep(u′;T) > d∗v}. Let L∗ be the sequence of depth of the vertices in {u′ ∈ PT (r, `1) |
dep(u′;T) > d∗v}, and L(T (uL))−L∗ denote the sequence obtained from L(T L

v) by elim-
inating the entries in L∗. We compare the label sequences L(T (uL))−L∗ and L(T R

v), and
define

state1(v) =

(d∗v ,w) if L(T (uL))−L∗ w L(T R
v)

(d∗v ,�) if L(T (uL))−L∗� L(T R
v)

(d∗v ,<) if L(T (uL))−L∗ < L(T R
v).

We define state2(v), v∈X2 analogously with state1 (see Fig. 3(a)). For `2 = lml(T (c2))
and a vertex v ∈ X2, let us denote uL = lcaL(`2,v) and uR = lcaR(`2,v). Let T R

v = T [uR,v]
and d∗v = dep(lca(`2,v);T) + dep(T R

v) + 1. If T (c2) has a non-core vertex u′ <T `v
with dep(u′;T) > d∗v or uR is not the second leftmost child of lca(`2,v), then we let
state2(v) = /0. Otherwise define state2(v) by (2).

Lemma 10.
Let T ∈ RT (n,∆) be a distinguished left-heavy tree such that T ′ = T −{`1, `2} is not
distinguished. Let d̃ be the current depth dep(`1;T) = dep(`2;T) of T (c1) and T (c2).
Then T −{`1, `2} is left-heavy if and only if, for each i = 1,2, T (ci) has no non-core
vertex v such that statei(v) = (d̃−1,<).

Constant Time Generation of Trees with Degree Bounds 191

When a child-tree T is generated from T by appending a new vertex vlast to v̂ in
the current tree T ′, statei, i = 1,2 are updated as follows. Let the preorder index of
vlast in T be K, i.e., vlast = vK . If vK = lml(T (ci)), then statei(vK) := (dep(vK ;T),w
). Assume vK 6= lml(T (ci)). If the second term in statei(vK−1) is “�" or “<," then
statei(vK) := statei(vK−1). Assume statei(vK−1) = (d∗,w). Let va = lca(`1,vK), and h
be the integer such that vK appears as the hth vertex in T R

vK
. If vertex va+h+1 belongs to

T R
vK

, then set statei(vK) to be (d∗,<). Otherwise, we set statei(vK) to be (d∗,�) (resp.,
(d∗,w) and (d∗,<)) if dep(va+h+1;T)> dep(vK ;T) (resp., dep(va+h+1;T) = dep(vK ;T)
and dep(va+h+1;T)< dep(vK ;T)).

When we remove `1 and `2 in the current tree T ′ ∈RT (n,∆) and add a new non-core
vertex to obtain a child-tree T = T ′−{`1, `2}, we need to recompute the competitor of the
current last non-core vertex vlast if T −{`1, `2} is not distinguished. Only in this case,
vlast ∈ X1 (resp., vlast ∈ X2) may have a pre-identical vertex in the subtree T (c1) (resp.,
T (c2)) of T = T ′−{`1, `2}. We can test whether vlast has a pre-identical vertex in such
a subtree T (ci) or not by checking statei(vlast). Let d̂ = dep(T).

(i) vlast ∈ X1: If state1(vlast) = (d̂,w), then set the competitor of vlast to be the
vertex vk′ in T (c1) corresponding to vlast, i.e., lca(`1,vlast) is a core vertex in T (c1) and
vk′ is the |V (T (lcaR(`1,vlast)))|th vertex in subtree T (lcaL(`1,vlast)).

(ii) vlast ∈ X2: If state2(vlast) = (d̂,w), then set the competitor of vlast to be the
vertex vk′ in T (c2) corresponding to vlast, i.e., lca(`2,vlast) is a core vertex in T (c2) and
vk′ is the |V (T (lcaR(`2,vlast)))|th vertex in subtree T (lcaL(`2,vlast)).

5.3 Entire Algorithm
We are ready to describe the entire algorithm except for showing how to efficiently

find unsaturated vertices in the spine S(T). Algorithm ENUMERATE constructs initial ∆-
bounded left-heavy trees T := Pn for an odd n and T := Pn−1 + i, i ∈ [0,n/2] for an even
n before it invokes a recursive procedure GEN of generating child-trees.

Algorithm ENUMERATE(n,∆,d)
Input: An integer n≥ 3, a capacity function ∆ : [0,bn/2c]→ [2,n−1],
and an integer d ≤ n.
Output: All ∆-bounded left-heavy trees with exactly n vertices and
a diameter at least d.

if n is odd then let T be path Pn rooted at its center; Initialize (T);
GEN(T)

else /* n is even */
Let Pn−1 be rooted at its center, where (v1 = r,v2, . . . ,vn/2 = `1)
denotes the path from `1 = lml(Pn−1) to the root r;
for each unsaturated vi (i.e., vi with ∆(i−1)≥ 3) do

Let T := Pn−1+(vi,v) be the tree obtained from Pn−1 by adding
a new leaf (vi,v) at vi; Initialize (T); GEN(T)

endfor
endif

192 The 9th International Symposium on Operations Research and Its Applications

The above initialization takes O(n) time. The next procedure GEN generates the child-
trees T ′ of the current ∆-bounded left-heavy T , and calls GEN(T ′) to enumerate all de-
scendants of T ′. We output only trees T with exactly n vertices at every third depth 3a+1
of recursive call at T during an execution of GEN. To attain an O(1)-time delay in the
worst case, a generated tree T ∈RT (n,∆) is output immediately before or after GEN(T)
is executed if a is even (resp., odd).

Procedure GEN(T)
Input: A left-heavy tree T ∈RT ([n,n−2],∆).
Output: All descendants T ′′ of T such that T ′′ is ∆-bounded left-heavy
trees with exactly n vertices and a diameter at least d.

if |V (T)|= n and the current depth of recursive calls is 3a+1 for an
even integer a then Output T

endif;
if |V (T)|= n, T is distinguished, dep(T)≥ d +1, and T −{`1, `2} is

left-heavy then T ′ := T −{`1, `2}; GEN(T ′)
endif;
if |V (T)|= n−2orn−1 then

for each unsaturated and valid vertex u in S(T) do
Let T ′ := T +(u,v) be obtained from T by adding a new leaf (u,v) ;
at u; GEN(T ′)

endfor
endif;
if |V (T)|= n and the current depth of recursive calls is 3a+1 for an

odd integer a then Output T
endif

We have shown that each line of GEN for generating a child-tree T ′ can be performed
in O(1) time, except for how to find unsatureted vertices in the spine S(T).

(a)

(b)

u2

u1

u2

u1

u5

u4

u3

u2

u1

u3

u2

u1

u6

u5

u4

u3

u7

u2

u1

u6

u5

u4

u3

u7

u8

(c)

(d) (e)

lua=0/
lua=0/lua=0/lua=0/lua=0/

Figure 4: Illustration for a process of appending new leafs, u2, u3, . . . , u8, where gray
vertices and dashed arrows indicate saturated vertices and lua, respectively.

Constant Time Generation of Trees with Degree Bounds 193

In the rest of the section, we briefly show how to find all valid and unsaturated vertices
in the spine S(T) for a left-heavy tree T ∈RT (n−1,∆)∪RT (n−2,∆).

We consider Case-1, i.e., vlast belongs to T (c1) (Case-2 can be treated analogously
by applying the following argument to each of S1(T) and S2(T)). We let lua(v) store the
lowest unsaturated ancestor of v in S(T), and lua(v) = /0 mean that there is no unsaturated
ancestor of v in S(T), for the root lua(r) = /0. When we search all valid and unsaturated
vertices in the spine S(T), we start with the lowest valid vertex uh∗ , which can be deter-
mined by the competitor of vlast together with lua(v̂). Recall that all vertices in S(T)
higher than uh∗ are valid by Lemma 5.

When a child-tree T ′ is generated from T by appending a new vertex v to v̂, we need
to update spn and lua (see Fig. 4), where lua(v) never changes since it is only updated
once when v is newly added to the tree. Including the maintenance of all data values, we
can find all unsaturated and valid vertices in the spine S(T) in O(1) time per each, where
we omit the detail due to space limitation and procedures for updating the data can be
found in a full version [11]. This shows that, given integers n and g and a capacity ∆, all
left-heavy and centerized trees in R(n,∆) with a diameter at least d can be generated in
O(1) time delay using O(n) space, proving Theorem 1

References
[1] R. Aringhieri, P. Hansen, F. Malucelli, Chemical trees enumeration algorithms, 4OR: Quart. J.

Oper. Resear., 1 (2003) 67-83.
[2] H. Fujiwara, J. Wang, L. Zhao, H. Nagamochi, and T. Akutsu, Enumerating tree-like chemical

graphs with given path frequency, J. Chem. Inf. Mod., 48, (2008) 1345-1357.
[3] T. Imada, S. Ota, H. Nagamochi, and T. Akutsu, Enumerating stereoisomers of tree structured

molecules using dynamic programming, LNCS 5878, (2008) 14-23.
[4] Y. Ishida, L. Zhao, H. Nagamochi, and T. Akutsu, Improved algorithm for enumerating tree-

like chemical graphs, Genome Informatics 21, (2008) 53-64.
[5] S. Nakano, Efficient generation of triconnected plane triangulations, Computational Geometry

Theory and Applications, Vol. 27(2), (2004) 109-122.
[6] S. Nakano and T. Uno, Efficient generation of rooted trees, NII Technical Report (NII-2003-

005) (2003).
[7] S. Nakano and T. Uno, Constant time generation of trees with specified diameter, LNCS 3353,

(2004) 33-45.
[8] S. Nakano and T. Uno, Generating colored trees, LNCS 3787, (2005) 249-260.
[9] R. A. Wright, B. Richmond, A. Odlyzko, and B. D. McKay, Constant time generation of free

trees, SIAM J. Comput. 15, (1986) 540-548.
[10] B. Zhuang and H. Nagamochi, Enumerating rooted graphs with reflectional block structures,

LNCS 6078, (2010) 49-60.
[11] B. Zhuang and H. Nagamochi, Constant time generation of trees with degree bounds, Dept.

of Applied Mathematics and Physics, Kyoto University, Technical Report 2010-006 (2010)
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical report/TR2010-006.pdf

194 The 9th International Symposium on Operations Research and Its Applications

