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Abstract  In this paper, we formulated a novel method to solve the classification problem 

within the multiple instance learning (MIL) contexts by multiple kernel learning. Despite the 

large number of SVM models, there are only a few models that can solve general MIL 

problems well. To improve the classification precision of SVM method with regard to MIL 

problem, this paper introduced multiple kernel learning method to the process of multiple 

instance learning, and proposed a new SVW model (MKMI-SVM), which based on the 

MI-SVM model. The solution for this model was presented, and some numerical experiments 

on benchmark data were taken into this paper too. Computational results on a number of 

datasets indicate that the proposed algorithm is competitive with other SVM methods. 

Keywords  Multiple instance learning, Support vector machines, multiple kernel learning, 

multi-class SVM 

1 Introduction 

Literatures [1–3] gave us an introduction about multiple instance classification 

problems. In this paper we gave a method to solve the problem which is mentioned in 

literature [10]. The problem to consist of classifying positive and negative bags of 
points in the n-dimensional real space R

n
 on the following basis is considered. A bag 

is classified as a positive bag if one or more instances in that bag are positive, 

otherwise it is classified as a negative bag. 

This problem was firstly analyzed by T. G. Dietterich et al.
 [1]

 in the pharmic 

activity’s prediction in the 90s, 20century. T. G. Dietterich considered every 

molecule as a bag in their analysis, and every low power shape represented an 

instance in the bag. This is the origin of multiple instance learning (MIL). The MIL 

problem has been existed for a long while; however, it is not a sudden result of 

pharmic activity’s prediction. Previous machine learning
 [4, 5]

 didn’t take this kind of 

problems’ property into consideration formally, and the problem hasn’t been exactly 
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defined until T. G. Dietterich’s work.  

Later the analysis of this problem aroused a number of Machine learning 

researchers’ interest and a lot of research works have been done. Various methods for 

multiple instance classification problems have been proposed, including integer 

programming
 [6]

, expectation maximization
 [7]

, kernel formulations
 [8]

, and lazy 

learning
 [7]

. Ray and Craven
 [9]

 provide an empirical comparison of several multiple 

instance classification algorithms and their non-multiple-instance counterparts. The 

classical SVM methods to solve MIL problem are MI-SVM and mi-SVM, which 

proposed by S.
 
Andrews

 [6]
. Based on their work, this paper added multiple kernel 

methods to the classical SVM methods, and gave a novel formulation for MIL 

problem. Meanwhile the strengths and the weakness about this new method have 

been discussed. Andrews et al. extend the single kernel SVM, while we begin with 

the multiple kernels SVM 
[10]

. The use of the multiple kernels SVM allows us to get a 

better description of data’s distributing as opposed to single kernel SVM. We include 

results in Sect. 4 which demonstrate that multiple kernel methods are much more 

computationally efficient and faster than classical methods. 

The paper is organized as follows. In Sect. 2 we give a review of some interrelated 

concepts. In Sect. 3 we introduce our formulation of the multiple instance 

classification problems and state its properties. In Sect. 4 we present our numerical 

tests on five datasets. Section 5 concludes the paper. 

2 The background about SVM method for multiple 

instance learning and multiple kernel learning 

As the background of this paper, this section will introduce MI-SVM which is the 

classical SVM method for MIL problem and the standard multiple kernel SVM 

method. 

2.1 Support vector machines for multiple instance learning 

In this part, a brief review about classical SVM methods for multiple instance 

learning, MI-SVM and mi-SVM, will be shown. And we are going to introduce the 

basic idea, model and solving algorithm respectively. 

Andrews et al.
 [6]

 have previously investigated extending support vector 

machines to the multiple instance classification problems using mixed-integer 

programming. They use integer variables either to select the class of points in 

positive bags or to identify one point in each positive bag as a “witness” point that 

must be placed on the positive side of the decision boundary. Each of these 

representations leads to a natural heuristic for approximately solving the resulting 

mixed-integer program. 

S.
 
Andrews gave an alternative way

 [6]
 of applying maximum margin ideas 

which is the main ideas of SVM to the MIL setting. They extend the notion of a 

margin from individual patterns to set of patterns. It is natural to define the functional 

margin of a bag with respect to a hyperplane by
I max( , )I

i I
Y w xi b


  . Therefore 

based on the this notion of a bag margin, the SVM model has been redefined into  
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For solving this program, unfolding the max operations by introducing one 

inequality constraint for per instance has been done. For negative bags, the inequality 

constrains can be read as , 1 ,Iw xi b i I      , where 1IY   . 

For positive bags, [6] introduces a selector variable  s I I  which denotes the 

instance selected as the positive “witness” in per positive bag IB . Meanwhile they 

gave two methods to select  s I I  from IB , MI-SVM and mi-SVM. 

Both of MI-SVM and mi-SVM are casted as mixed-integer programs. They will 

be shown in algorithm1 and algorithm 2 in the following, respectively. 

 

Algorithm1 mi-SVM algorithm Algorithm2 MI-SVM algorithm 
Initialize i Iy Y  for i I  

REPEAT 

Compute SVM solution w, b for data with imputed labels 

Compute outputs ( , )i if W X b   for all iX  in positive bags 

      Set sgn( )i iy f  for every , 1Ii I Y   

FOR (every positive bag IB ) 

          IF ( (1 ) / 2 0ii I
y


  ) 

Compute 
* arg max i I ii f  

Set * 1
i

y   

          END 

       END 
WHILE (imputed labels have changed) 

OUTPUT(w, b) 

Initialize / | |I ii I
X x I


  for every positive bag IB  

REPEAT 

Compute QP solution w, b for data set with positive examples{ : 1I IX Y  } 

Compute outputs ( , )i if w x b   for all ix  in positive bags 

Set ( ), ( ) arg maxI s I i I iX X s I f   for every , 1II Y   

WHILE ( selector variables ( )s I  have changed) 

OUTPUT(w, b) 

 

2.2 Multiple kernel learning 

MI-SVM model by Andrews et al. extend the classical simple kernel SVM, 

while we begin with the multiple kernels SVM [11]. In this part, we will give an 

introduction about multiple kernels SVM’s basic idea, model and main computing 

Algorithm. 

Multiple kernels learning (MKL) aims at simultaneously learning a kernel and 

the associated predictor in supervised learning settings. Let  
1

,
l

i i i
x y


 is the learning 

set, where ix  belongs to some input space X  and iy  is the target value for 

pattern ix . For kernel algorithms in SVM, the solution of the learning problem is of 

the form 

* *

1

( ) ( , )
l

i i

i

f x K x x b


   

where *

i  and *b  are some coefficients to be learned from examples, while ( , )K    

is a given positive definite kernel associated with a reproducing kernel Hilbert space 

(RKHS) H . 

In some situations, a learning practitioner may be interested in more flexible 
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models. Recent applications have shown that using multiple kernels instead of a 

single one can enhance the interpretability of the decision function and improve 

performances
 [11]

. In such cases, a convenient approach is to consider that the kernel 

( , ')K x x  is actually a convex combination of basis kernels: 
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where M is the total number of kernels. Each basis kernel mK may either use the full 

set of variables describing x or subsets of variables stemming from different data 

sources
 [11]

. Alternatively, the kernels mK can simply be classical kernels (such as 

Gaussian kernels) with different parameters. Within this framework, the problem of 

data representation through the kernel is then transferred to the choice of weights md . 

In the SVM methodology, the decision function is of the 

form
1 1

( )
l M

i i m m

i m

f x y d K b
 

   , where the optimal parameters md , i and b  are 

obtained by solving the dual of the following optimization problem
 [10]

: 
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The MKL formulation introduced by Bach et al. [12] and further developed by 

Sonnenburg et al. [13] consists in solving an optimization problem expressed above. 

Nowadays an effective method to solve this optimization problem is proposed by 

Alain Rakotomamonjy et al. in 2008 [11]. The main algorithm will be shown in 

algoithm3 in following. 

Algorithm3 Simple MKL algorithm 

Set 
1

md
M

  for 1,...,m M  

While stopping criterion not met do 

Compute ( )J d  by using an SVM solver with m mm
K d K  

Compute 
m

J

d




 for 1,...m M  and descent direction (12)D . 

Set arg max m
m

d  ， † 0J  ， †d d ， †D D  

While 
† ( )J J d do {descent direction update} 

†d d ， †D D  

max
{ | 0}

argmin / , /
m

m m v v
m D

v d D d D


     

†

maxd d D  ， †

vD D D   ， † 0vD   

Compute †J by using an SVM solver with 
†

m mm
K d K  

End while 

Line search along D  for max[0, ]   {calls an SVM solver for each  trial value} 

d d D   

End while 
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3 MKMI-SVM Classification Model and Algorithm 

Multiple kernel SVM is used for some situations where a machine learning 

practitioner may be interested in more flexible models. We can expect multiple kernel 

learning will has a better performance in MIL problem for two reasons. Obviously, 

since the highly complicated description about real object in MIL that the special 

problem, a flexible model is necessary for the learning task. Meanwhile the enhance 

about the interpretability of the decision function, more effectible computation and 

higher predication accuracy not only can be expected, but also are our hopes in MIL. 

Therefore, it is significant to add multiple kernel method to MIL problem. In this 

section, the model and algorithm of MKMI-SVM will be given. 

In MKMI-SVM method, we also defined the functional margin of a bag with 

respect to a hyperplane by
I max( , )I

i I
Y w xi b


  . Based on this rules, the inequality 

constraints in multiple kernel SVM can be changed for solving MIL problem. 

Therefore the MKMI-SVM model can be expressed a new optimization problem 

showed in following: 

MKMI-SVM      

2
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1 1
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Since the first constraint in our multiple instance formulation contains the max 

operations. We also unfolded this max operation as [6]. For negative bags, the 

inequality constraint can be read as , 1 ,Iw xi b i I      , where 1IY   . For 

positive bags, a selector variable  s I I  which denotes the instance selected as the 

positive instance in per positive bag IB will be gave. For md ,  s I I and ,b , 

alternately compute one set of variables when hold other sets. This leads to the 

successive solution of MKMI-SVM programs that underly our algorithm which we 

specify now. 

 

Algorithm4  MKMI-SVM Algorithm 
Initialize i iy Y  for i I  

REPEAT 

Compute MK-SVM solution
1

( , ), ,
M

m m n i

m

K d K x x b


 for data set with imputed labels 

Compute outputs 
1 1

( ( , ))
l M

i i m m n i

n m

f d K x x b
 

   for all ix  in positive bags 

FOR (every positive bag IB ) 

                                           IF ( (1 ) / 2 0ii I
y


  ) 

                                            Compute 
* arg max i I ii f  

                                            Set * 1iy   

                                           END 

END 

WHILE (imputed labels have changed) 

OUTOUT ( , ,md b ) 
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In practice, computing the MKMI-SVM Algorithm 4 may be faster than classical 

MI-SVM when you should change your kernel to check more kernel Hilbert space 

(RKHS). If the number of kernel you should compute is N, the classical SVM 

methods will compute their Algorithm 5 times. And the MKMI-SVM’ time is equal 

to its number of iterations time. In [11], a lot of numerical testing had been done to 

compare which is faster. Multiple kernel learning often has the better performances. 

4 Numerical Experiments 

In this section, some numerical experiments will be done for testing the 

MKMI-SVM’s capabilities in MIL problem. To evaluate the capabilities of 

MKMI-SVM method, we have performed some experiments on benchmark data. In 

this paper, we reported results on 5 datasets, two from the UCI machine learning 

repository
 [14]

, and three from [6]. Detailed information about these datasets is 

summarized in Table 1. We use the datasets from [6] to evaluate our multiple kernel 

classification algorithms. These three datasets are from an image annotation task in 

which the goal is to determine whether or not a given animal is present in an image. 

The two datasets from the UCI repository
 [14]

 are the Musk datasets, which are 

commonly used in multiple instance classification. 

  

Table 1 Description of the datasets used in the experiments. Elephant, Fox and 

Tiger datasets are used in [6], while Musk-1 and Musk-2 are available from [14]. 

+Bags denotes the number of positive bags in each dataset, while +Instances 

denotes the total number of instances in all the positive bags. Similarly, −Bags and 

−Instances denote corresponding quantities for the negative bags 

Data set +bag +instances -bag -instances features 

Elephant 100 762 100 629 143 

Fox 100 647 100 673 143 

Tiger 100 544 100 676 143 

Musk-1 47 207 45 269 166 

Musk-2 39 1017 63 5581 166 

 

We compare our multiple kernels classification algorithm to the mi-SVM and 

MI-SVM
 [6] 

on three image datasets. Since Andrews et al. also report results on Zhang 

and Goldman’s expectation maximization approach EM-DD
 [7]

 on these datasets
 [6]

; 

we include those results here as well. Table 2 reports results comparing MKMI-SVM 

to mi-SVM, MI-SVM and EM-DD. Accuracy results for mi-SVM, MI-SVM and 

EM-DD were taken from [6]. Accuracy for MIMK-SVM was measured by averaging 

ten ten-fold cross validation runs. The multiple kernels for MKMI-SVM were 

selected by 10 different Gaussian kernel, kernel parameters form 2
-5

 to 2
4
. The 

parameters C for MKMI-SVM were selected from the set {2
i
 |i =−5, . . . , 4} by 

ten-fold cross validation on each training samples of the image datasets. 
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Table 2 MKMI-SVM, mi-SVM
 [6]

, MI-SVM
 [6]

 and EM-DD
 [7]

 testing accuracy 

used averaged over ten ten-fold cross validation experiments. The datasets are those 

used by Andrews et al. in [6]. Best accuracy on each dataset is in bold. 

Data set MKMI-SVM mi-SVM MI-SVM EM-DD 

Elephant 81.8% 82.2% 81.4% 78.3% 

Fox 58.7% 58.2% 57.8% 56.1% 

Tiger 84.0% 78.4% 84.0% 72.1% 

 

In order to evaluate the difference between the algorithms more precisely, we 

used the Friedman test
 [17]

 on the results reported in Table 2. The Friedman test is a 

nonparametric test that compares the average ranks of the algorithms, where the 

algorithm with the highest accuracy on a dataset is given a rank of 1 on that dataset, 

and the algorithm with the worst accuracy is given a rank of 5. Therefore the average 

rank was 1.3 for MKMI-SVM, 1.5 for mi-SVM, 2.3 for MI-SVM, and 4 for EM-DD. 

The better performance by MKMI-SVM expressed on MKL problem was clearly 

showed. 

 

Table 3 MKMI-SVM, mi-SVM
 [6]

, MI-SVM
 [6]

, EM-DD
 [7]

, DD
 [15]

, MI-NN
 [16]

, 

IAPR
 [1]

, and MIK
 [8]

 ten-fold testing accuracy on the Musk-1 and Musk-2 datasets. 

Best accuracy is in bold. 

Dataset MKMI 

-SVM 

mi-SVM MI-SVM EM-DD DD MI-NN IAPR MIK 

Musk-1 88.6% 87.4% 77.9% 84.8% 88.0% 88.9% 92.4% 91.6% 

Musk-2 85.2% 83.6% 84.3% 84.9% 84.0% 82.5% 89.2% 88.0% 

 

Table 3 gives ten-fold cross validation accuracy results for MKMI-SVM using 

the same test method on the Musk-1 and Musk-2 datasets which are available from 

the UCI repository
 [14]

. In table 3, we can see that MKMI-SVM got the best accuracy 

in all SVM methods, but some simple method like IAPR methods, got the better 

result on the contrary. It showed that MKMI-SVM will just have a better performance 

on the complicated dataset of which the acting feature and its reciprocity in 

classification is not very clear, but for the ordinary datasets of which the acting 

feature and its reciprocity is clearly enough, it is proper to perform some simple 

methods. Obviously, this is in line with the principle of Occam's razor; meanwhile it 

can suggest us the type of dataset for which MKMI-SVM method is proper to be 

used. 

5 Conclusion and Outlook 

This paper has introduced a mathematical programming formulation of the 

multiple instance problems that has used multiple kernel learning. Results on 

previously published datasets indicate that our approach is effective at some situation 

where a machine learning practitioner may be interested in more flexible models. 

Furthermore, multiple kernels learning often cost less than simple kernel for learning 

in multiple kernel Hilbert space, and computing the MKMI-SVM maybe faster than 

classical simple kernel method in practice. Improvements in the mathematical 
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programming formulation and evaluation using a wide variety of datasets and 

algorithms, such as those in [17], are promising avenues of future research. 
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