
Approximation Algorithms for the Multiply
Constrained Assignment Problem

Daisuke Yokoya Takeo Yamada

Department of Computer Science, The National Defense Academy
Yokosuka, Kanagawa 239-8686, Japan

Abstract We consider the multiply constrained assignment problem (MCAP), which is a variation
of the linear assignment problem with m additional constraints. First, we derive upper and lower
bounds respectively by heuristic and relaxation methods. The latter also implies the Lagrangian
relaxation, as well. Next, we introduce the pegging test to MCAP, and further a virtual pegging
test to reduce MCAP into a binary integer problem of smaller size. By solving the reduced prob-
lem, we obtain an approximate solution, which is often proved optimal. The results of numerical
experiments are also given.

Keywords Assignment problem, Side constraints, Pegging test, MIP solver

1 Introduction
Assignment problem (AP for short) [1] is a classical combinatorial optimization prob-

lem that can be solved efficiently by polynomial time algorithms [8]. AP has been applied
in many practical situations, such as personnel assignment, parallel machine scheduling
and matching of moving objects among others. However, many real-life AP models are
complicated due to existence of side constraints. Thus, we are concerned with the follow-
ing multiply constrained assignment problem (MCAP).

MCAP : Minimize
n∑

i=1

n∑

j=1

ci jxi j (1)

subject to
n∑

j

xi j = 1, i ∈ N (2)

n∑

i

xi j = 1, j ∈ N (3)

n∑

i

n∑

j

rk
i jxi j ≤ bk, k ∈ M (4)

xi j ∈ {0,1}, ∀i, j. (5)

where N = {1,2, · · · ,n} and M = {1,2, · · · ,m}.

The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19–23, 2010
Copyright © 2010 ORSC & APORC, pp. 152–159

The case of m = 1 is the singly constrained assignment problem (SCAP), which can
be solved by a branch-and-bound algorithm of Lieshout et al. [9]. The purpose of this
paper is to present algorithms to obtain approximate solutions for problems with m ≥ 2.

2 Lower and upper bounds
2.1 Lower bound: continuous relaxation

Let C(MCAP) denote the continuous relaxation of MCAP where (5) is replaced with
xi j ≥ 0. This is an LP problem with 2n+m constraints and n2 variables. For n = 1000 and
m = 100, this is an LP with 2100 rows and 1 million columns. However, with the power
of computers and solvers [6] of today, we can solve problems of this size without much
difficulty. The optimal objective value zC gives a lower bound to MCAP, and by (u†,v†,λ†)
we denote the optimal dual variables corresponding to (2), (3) and (4) respectively.

2.2 Lower bound:Lagrangian relaxation
With nonnegative multipliers λ = (λi j) associated with (4), the Lagrangian relaxation

[4] of MCAP is defined as

LMCAP(λ) : Minimize
n∑

i=1

n∑

j=1

(ci j +

m∑

k=1

λkrk
i j)xi j−

m∑

k=1

λkbk (6)

subject to (2), (3) and (5).

For a fixed λ ≥ 0, this is an AP. Let the optimal objective values to LMCAP(λ) be z(λ).
Then, we have the following [16].

Theorem 1.

(i) For an arbitrary λ≥ 0, z(λ) gives a lower bound to MCAP, i.e., the optimal objective
value z? to MCAP satisfies

z? ≥ z(λ).

(ii) z(λ) is a piecewise-linear, concave function of λ.
(iii) If z(λ) is differentiable at λ,

∂z(λ)/∂λk =
∑

i

∑

j

rk
i jxi j−bk, k = 1,2, · · · ,m. (7)

Consider the Lagrangian dual:

Minimize z(λ) subject to λ ≥ 0. (8)

The optimal objective value to this problem, denoted as zL, gives the lower bound by the
Lagrangian relaxation. Then, we have the following [16].

Theorem 2. λ† gives an optimal solution to the Lagrangian dual, That is, zL = z(λ†).
Moreover, this coincides with the lower bound by continuous relaxation, i.e., zL = zC .

Thus, in what follows we write z instead of zC (or zL).

Approximation Algorithms for the Multiply Constrained Assignment Problem 153

2.3 Upper bounds
2.3.1 Lagrangian heuristics

From (7), it is expected that there exists λ] satisfying

∂z(λ])
∂λ

≤ 0, λ] ≥ λ† (9)

in the neighborhood of λ†. Although this is not true in general, in most actual computa-
tions we find such a λ]. Then, we have a feasible solution x(λ]), and correspondingly an
upper bound z] = z(x(λ])). We search for such a λ] by the following.

Algorithm Lagrangian_Heuristic

Step 1. Set t = 0 and λt = λ†.
Step 2. Solve LMCAP(λt) and obtain x(λt) and z(λt).
Step 3. If ∂z(λt)/∂λ ≤ 0, output λ] := λt and z] := z(x(λt)), and stop.
Step 4. If ∂z(λt)/∂λk > 0 for some k, update λt+1

k ← max{1.2λt
k,0.5}, t ← t + 1, and go

back to Step 2.

2.4 Local search
We may improve the solution (x],z]) obtained previously by the following local search

method. Let x = (xi j) be a feasible solution to MCAP with the objective value z = z(x).
We say that y = (yi j) is in the 2-opt neighborhood of x, if it is obtained from x by replacing
assignment of two items, say i1 and i2. By N(x) we denote the set of 2-opt neighbors of
x. Then, the local search algorithm is quite standard with this neighborhood, i.e., from
a solution x we move to an improved solution y ∈ N(x), as long as we find such a better
solution in N(x).

3 Pegging and virtual pegging approaches
3.1 Pegging test for BIP

Since MCAP is a binary integer programming (BIP) [12] problem, we can apply the
pegging test for BIP to MCAP as well. Here we briefly summarize the pegging test for
readers’ convenience.

Let us consider the following BIP.

P: Minimize cx subject to Ax = b, x ∈ {0,1}n.

Let x? = (x?j) ∈ Rn be an optimal solution to P with the objective value z? := z(x?). First,
we relax the 0-1 constraints to the continuous 0 ≤ x j ≤ 1,∀ j. The resulting linear pro-
gramming problem is denoted as C(P). Solving this yields an optimal solution x with the
corresponding objective value z := z(x), which gives a lower bound to P. Next, assume
that we have a feasible solution x̄ ∈ Rn to P. This gives an upper bound z̄ := z(x̄). Thus we
have

z ≤ z? ≤ z̄.

154 The 9th International Symposium on Operations Research and Its Applications

Let an optimal feasible canonical form (FCF, [2], [3], [11]) of C(P) be

b̄i = xB(i) +
∑

j∈N

αi jx j, (10)

z = z +
∑

j∈N

α0 jx j, (11)

where N is the index set of non-basic variables, and B(i) denotes the index of the ith basic
variable. From optimality of this form we have

α0 j ≥ 0, ∀ j ∈ N,

0 ≤ b̄i ≤ 1, i = 1,2, · · · ,r.

For i = 1,2, · · · ,r we define

PUi := min{−α0 j/αi j | j ∈ N,αi j < 0}(1− b̄i), (12)
PLi := min{α0 j/αi j | j ∈ N,αi j > 0}b̄i. (13)

Here, if the defining set is empty, we set min{· | ∅} :=∞. Then, we have [10]

Theorem 3.

(i) For basic variable xB(i) in (10),

PUi > z̄− z ⇒ x?B(i) = 0, (14)

PLi > z̄− z ⇒ x?B(i) = 1. (15)

(ii) For non-basic variable x j (j ∈ N) in (11),

α0 j > z̄− z ⇒ x?j = 0. (16)

3.2 An improved reduction method for MCAP
A difficulty with the pegging test for MCAP is that the size of this problem is too large,

because with n2 columns computing all elements of (10)-(11) can be quite expensive.
However, this can be remedied as follows.

Let us consider the optimal FCF given by (10) and (11). From the unimodularity [1],
[14] of the coefficient matrix of the assignment problem, we have the following.

αi j ∈ {−1,0,1}, ∀ j ∈ N, (17)
b̄i ∈ {0,1}, ∀i. (18)

Let

N+ := { j ∈ N | α0 j > z̄− z}, N− := { j ∈ N | α0 j ≤ z̄− z}. (19)

Then, we have

Approximation Algorithms for the Multiply Constrained Assignment Problem 155

Theorem 4.

(i) b̄i = 1 and { j ∈ N− | αi j = 1} = ∅ ⇒ x?B(i) = 1,
(ii) b̄i = 0 and { j ∈ N− | αi j = −1} = ∅ ⇒ x?B(i) = 0.

An important implication of this theorem is that, in carrying out the pegging test, we
only need columns in N−, and see if { j ∈ N− | αi j = ±1} = ∅ is satisfied. Frequently, |N−| is
much smaller than |N |, and if this is the case pegging test by Theorem 4 is far more faster
than the direct application of Theorem 3.

Then, removing fixed variables, we have a reduced BIP of smaller size, and solving
this obtain an optimal solution with exact z?.

3.3 A virtual pegging procedure
The usefulness of the pegging test depends on the gap between the upper and lower

bounds. If the gap is not small enough, the effectiveness of the method is limited. In such
a case, we may carry out the pegging test using an arbitrary value l within [z, z̄] as a hy-
pothetical upper bound. Such an l is said to be a trial value. As the result of this pegging
with z and l, some xi j’s will be fixed either at 0 or 1, and we obtain a reduced problem.
The optimal objective value obtained by solving this reduced problem will be denoted
as z?l , and is referred to as the realization for the trial value l. If the reduced problem is
infeasible, we define z?l :=∞. Then, we have [17]

Theorem 5. For an arbitrary trial value l ≥ z and its realization z?l , the followings hold.

(i) l ≥ z?⇒ z?l = z?,
(ii) l < z?⇒ z?l ≥ z?,

(iii) l ≥ z?l ⇒ z?l = z?.

Thus, in case of (iii) the solution is proved, a posteriori, optimal. Otherwise, unless
z?l =∞ we have an approximate solution. If z?l =∞, we may retry with an increased l,
until we have a feasible solution to MCAP.

4 Numerical experiments
We implemented the algorithms stated in the previous sections in ANSI-C language

and carried out numerical experiments on an Dell Precision T7400 computer (CPU: Xeon
(R) X5482, 3.20GHz, 2.00GB RAM).

4.1 Design of experiments
Instances are prepared as follows. First, ci j is uniformly and independently distributed

over the integer interval [1, 1000]. For (rk
i j) we consider three patterns:

Dense : Here rk
i j is also uniformly random over [1, 1000], independent of

ci j and between k’s.
Sparse : The first constraint (k = 1) is generated similarly. However, for

2 ≤ k ≤ m 75% of rk
i j are set to 0, while the remaining 25% are

distributed over [1, 1000].
Disjunctive : For 2 ≤ k ≤ m, we pick up a pair of rows at random, and 30% of

the elements of these rows are set to 1, while the remaining 70%
are 0.

156 The 9th International Symposium on Operations Research and Its Applications

To make the instance feasible, we set bk as follows.

bk =
∑

i

rk
ii.

4.2 Result of experiments
In Table 1-3 we compare two approximation methods: the Lagrangian heuristic fol-

lowed by the local search (Lagrangian + LS), and the virtual pegging. Columns stand for
the followings, and each row is the average over 10 random instances.

UB1 : Upper bound obtained by Lagrangian + LS.
UB2 : Upper bound by Virtual pegging.
LB : Lower bound.

Opt% : The percentage (out of 10 runs) that the Virtual pegging produced
optimal solutions.

From these tables, we observe the followings.

• Virtual pegging gives approximate solutions which are very close to optimal. For
Sparse and Disjunctive cases, the solutions is frequently proved optimal.
• Lagrangian + LS can be advantageous for Dense instances in CPU time. However,

for Sparse and Disjunctive cases, the quality of the solution from this method is
disastrous.

5 Conclusion
We have formulated MCAP, and presented two approximate algorithms to solve the

problem. By the virtual pegging approach, we were able to solve MCAP of considerable
size within a few minute. These were approximate solutions, but usually very close to
optimal, and often proved optimal.

References
[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin: Network Flows: Theory, Algorithms, and Appli-

cations (Prentice Hall, Englewood Criffs, 1993).
[2] V. Chvátal: Linear Programming (Freeman and Company, San Francisco, 1983).
[3] G.B. Danzig: Linear Programming and Extensions (Princeton Univ. Press, Princeton, 1963).
[4] M. Fisher: The Lagrangian relaxation method for solving integer programming problems.

Management Science, 50 (2004), 1861-1871.
[5] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-

Completeness (Freeman and Company, San Francisco, 1979).
[6] ILOG CPLEX 11.1, http://ilog.com/products/cplex, 2008.
[7] P. Kouvelis and G. Yu: Robust Discrete Optimization and Its Applications, Kluwer, Dordrecht,

1997.
[8] H.W. Kuhn: The Hungarian method for the assignment problem. Naval Research Logistics

Quarterly 2 (1955), 83-97.
[9] P.M.D. Lieshout and A. Volgenant, “A branch-and-bound algorithm for the singly constrained

assignment problem", European Journal Operational Research, Vol. 176, pp. 151-164. 2007.
[10] R.M. Nauss: Parametric Integer Programming (Univ. Missouri Press, Columbia, MI, 1979).

Approximation Algorithms for the Multiply Constrained Assignment Problem 157

Table 1: Numerical experiment (Dense)
Lagrangian+LS Virtual pegging

n k UB1/LB CPUsec UB2/LB CPUsec Opt%
200 2 105.1 0.57 101.0 0.59 40

3 106.7 0.69 101.4 0.87 10
4 106.2 0.80 101.4 1.55 20

400 2 102.4 7.53 100.3 7.58 40
3 103.7 11.14 100.5 11.64 20
4 105.7 13.59 100.4 47.60 40

600 2 102.3 32.23 100.1 32.50 10
3 104.4 43.82 100.2 51.32 10
4 106.5 55.07 100.2 325.62 20

Table 2: Numerical experiment (Sparse)
Lagrangian+LS Virtual pegging

n k UB1/LB CPUsec UB2/LB CPUsec Opt%
200 4 135.1 0.61 100.3 0.41 80

16 214.2 0.70 100.6 0.58 70
64 316.9 0.99 103.2 32.25 10

400 4 105.6 5.22 100.0 3.07 100
16 174.6 5.71 100.1 3.72 100
64 275.3 6.69 100.2 10.19 100

600 4 117.2 21.40 100.0 11.98 100
16 152.3 23.88 100.0 14.21 100
64 313.9 28.27 100.1 20.35 100

800 4 124.7 55.18 100.0 30.14 100
16 160.1 60.83 100.0 33.15 100
64 258.3 70.73 100.0 42.16 100

1000 4 100.4 56.15 100.0 58.34 100
16 100.7 61.03 100.0 63.02 100
64 178.1 77.85 100.0 77.80 100

[11] M. Padberg, Linear Optimization and Extensions, 2nd Ed., Springer, 1999.
[12] C.H. Papadimitriou and K. Steiglitz: Combinatorial Optimization: Algorithms and Complex-

ity (Prentice Hall, Englewood Cliffs, 1982).
[13] S. Sakakibara and M. Nakamori: “On assignment problems with vector cost," (in

Japanese),Proc. 2005 Fall Conf. OR Soc. Japan, 2-D-5, 2005.
[14] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[15] R. Sedgewick: Algorithms in C, Third Ed. (Addison-Wesley, Reading, 1998).
[16] L.A. Wolsey: Integer Programming (John Wiley & Sons, New York, 1998).
[17] B.-J. You and T. Yamada, “A virtual pegging approach to the precedence constrained knapsack

problem", European Journal Operational Research, Vol. 183, pp. 618-632. 2007.

158 The 9th International Symposium on Operations Research and Its Applications

Table 3: Numerical experiment (Disjunctive)
Lagrangian+LS Virtual pegging

n k UB1/LB CPUsec UB2/LB CPUsec Opt%
200 4 111.0 0.32 100.1 0.35 100

16 143.5 0.38 100.1 0.35 100
64 196.3 1.92 100.2 0.47 100

400 4 107.1 2.62 100.0 2.97 100
16 212.6 3.01 100.0 3.20 100
64 189.8 6.13 100.0 3.66 100

600 4 223.6 11.01 100.0 11.47 100
16 280.9 11.88 100.0 11.29 100
64 296.0 23.84 100.0 13.44 100

800 4 160.6 27.43 100.0 29.30 100
16 221.7 28.59 100.0 29.92 100
64 396.9 59.95 100.0 32.84 100

1000 4 100.3 55.62 100.0 57.63 100
16 171.8 57.53 100.0 58.55 100
64 178.0 84.80 100.0 69.33 100

Approximation Algorithms for the Multiply Constrained Assignment Problem 159

