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Abstract In this paper, we deal with the vehicle routing problem where vehicles have finite 

capacities and demands of customers are uncertain. We represent the uncertain demands by 

triangular fuzzy numbers and interpret them as possibility distributions. According to the 

same consideration as the stochastic programming with recourse, we treat the influence of the 

fuzziness of customers’ demands as recourse cost and formulate the problem as a two-stage 

possibilistic programming model. Defining the Fuzzy Mean of a fuzzy number as its the 

generalized mean value, the proposed model is equivalent to an ordinary programming 

problem and then a solution method based on Ant Colony System (ACS) can be proposed to 

give the best solution of the problem. Finally, some examples are given to illustrate the 

two-stage model and the solution algorithm. 

Keywords Fuzzy Vehicle Routing, Possibilistic Programming, Recourse Cost, Ant Colony 

System  

1 Introduction 

Efficient fleet and vehicle planning, scheduling and dispatching are essential for 

transportation service providers that want to improve service and increase reactivity, 

particularly when cost is a primary factor. In the field of operations research, the 

problems of fleet and vehicle planning, scheduling and dispatching are recognized 

as Vehicle Routing Problems (VRP). A typical vehicle routing problem requires one 

to design least cost routes from one depot to a set of geographically scattered points 

(cities, stores, warehouses, schools, customers etc.) [1].  

Although a great number of models and solution methods for solving vehicle 

routing problems, almost of them arise from deterministic mathematical models and 

all the factors involved in the models must be known exactly. Unfortunately, real 

world situations are often not so deterministic. There are cases that the imprecision/ 

uncertainty concerning demand, location, distance, timing, travel time, etc. must be 

taken into account. Fuzzy set theory has provided efficient and meaningful concepts 

and methodologies to formulate and solve mathematical programming and decision- 
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making problems of real world. Fuzzy approaches have been applied to solve a few 

kinds of fuzzy vehicle routing problems. Dubois and Prade [2] first introduced the 

fuzzy shortest-path problem in 1980. This problem has further been investigated by 

other researchers and generalized to a variety of situations [3]. Cheng and Gen [4] 

proposed a genetic algorithm to solve the fuzzy vehicle routing problem that fuzzy 

due-time is given as a triangular fuzzy number and the objectives are to minimize 

the fleet size of vehicles, maximize the average grade of satisfaction over customers, 

and minimize total travel distance and total waiting time for vehicles. Dusan and 

Goran [5] incorporated the rules of fuzzy arithmetic and fuzzy logic into the 

heuristic sweeping algorithm, and proposed two approximate reasoning algorithms 

to solve the vehicle routing problem with fuzzy demands. 

In this paper, we deal with the vehicle routing problem that vehicles have finite 

capacities and demands of customers are uncertain. We represent the uncertain 

demands by triangular fuzzy numbers and interpret them as possibility distributions. 

We propose a two-stage model with recourse cost for the problem, and then show 

that this model is equivalent to an ordinary 0-1 integer programming problem. To 

obtain the best solution of the problem, we further propose a solution method based 

on Ant Colony System (ACS). Finally, some examples are given to illustrate the 

two-stage model and the solution algorithm. 

2 Problem Description  

The fuzzy vehicle routing problem considered in this paper is specified as 

follows: 

(1) There is one central depot. m vehicles in the fleet start from the central depot, 

traverse n (n >1) customers to pick up passengers or products, and return to the 

central depot. Customers are indexed from 1 to n and the index 0 stands for the 

central depot.  

(2) The cost (distance or time, etc.) of a vehicle travelling from customer i (or 

depot 0) directly to customer j (or depot 0) is cij, which is an exact number and 

also cii=0 (i, j =0, 1, 2, …, n). 

(3) The capacity of vehicle k is Qk (k =1, 2, …, m), which is an exact number. 

(4) The demands of customers cannot be known exactly. The demand of customer 

i is described by a normalized triangular fuzzy number Di, its membership 

function is )( x
iD

 (i =1, 2, …, n). 

(5) A picking up must be made to each customer exactly once and vehicles are 

always available. 

(6) The objective is to find the optimal routing plan for vehicles to minimize the 

total cost, which is the weighted sum of the total travel cost of vehicles and 

penalties for less utilization or lack of capacity of vehicles. 

3 Two-Stage Model  

3.1 Notation and the Mode of fuzzy number 

In this paper, index i and j are used to denote a customer (i,j =1, 2, …, n) and 
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i,j= 0 stand for depot, and further index k is used to denote a vehicles (k =1, 2, …, 

m). A 0-1 variable xkij is introduced that xkij=1 if vehicle k travels directly from 

customer i to customer j and otherwise xkij=0. Because the demand of customer i is 

a fuzzy number Di, total requirement of picking up for vehicle k is also a fuzzy 

number and denoted as Rk (k =1, 2, …, m). 

Generally, the mode is the most frequently occurring value in a set of discrete data. 

The mode of a fuzzy number is the value or the median of values corresponding to the 

membership function value 1. Let M(t) be the operator to calculate the mode of fuzzy 

number t and ta be its mode, i.e., ta=M(t), t can then be rewritten as: 

t= ta +tf  (1) 

where ta is a crisp value and tf is a fuzzy number with mode 0 (M(tf)=0). 

According to equation (1), the fuzzy demand Di can be described as: 

Di = Dai+ Dfi (2) 

where Dfi satisfies M(Dfi)=0, and Dfi represents a measure of the degree of fuzziness 

of demand Di. Rk, the total requirement of picking up for vehicle k, can also be 

described as: 

Rk= Rak+ Rfk  (3) 

where Rfk satisfies M(Rfk)=0. 

3.2 First Stage Problem (FSP) 

If we take only Dai into account, the less utilization of capacity of vehicle k, 

denoted by Sak and the lack of capacity of vehicle k, denoted by Lak can be defined 

as 

Sak =Max (0, Qk - Rak ), Lak =Max(0, Rak - Qk)  (4) 

Considering only Sak and Lak, we can formulate a crisp vehicle routing problem as 

the following equations (5)-(11). 

(First Stage Problem FSP) 

Minimize   
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3.3 Recourse Cost and Two-Stage Model  
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Based on the same consideration as the stochastic programming with recourse [6], 

we can first solve the first stage problem (FSP) described above and obtain a delivery 

plan. Then, at the second stage, once the delivery plan obtained at the first stage is 

carried out, we need make corrections or recourse actions on the delivery plan, 

because the realization of the fuzzy demand differs from its mode or most possible 

values. These corrections or recourse actions should be made at minimal costs. 

(1) Recourse cost 

For the fuzzy vehicle routing problem considered here, The recourse cost is the 

penalty due to less utilization of vehicles’ capacity and the additional cost to cover 

the failures that vehicles are not able to serve some customers on the planned route 

due to insufficient capacity. Due to the spread Dfi of the fuzzy demand Di, the total 

requirement for vehicle k, Rk differs from its mode Rak and this difference, denoted as 

Rfk in equation(3), can be calculated as: 

 
 
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fj

n
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kijfk
x
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DR  ;  k=1, 2, …, m (12) 

The difference Rfk in the requirement for vehicle k leads to the difference in the 

less utilization of capacity or the lack of capacity of vehicle k. Denoting the 

difference in the less utilization of capacity and the lack of capacity of vehicle k by 

Sfk and Lfk respectively, we define Sfk and Lfk as: 

Sfk =Max (0,-Rfk) ;   Lfk =Max(0, Rfk) (13) 

Let uk (uk>0) be the penalty for a unit less utilization of capacity of vehicle k, 

and vk (vk>0) be the additional cost for a unit lack of capacity of vehicle k, the 

recourse cost can then be calculated as:  

)(
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 (14) 

(2) Two-Stage Model 

For each possible realization of fuzzy demands, we can decide a correction or a 

recourse action of the minimum recourse cost; weighted with their respective 

possibilities, a mean cost can be computed. This mean cost is indeed the mean 

recourse cost corresponding to all of routing plan obtained at the first stage. The 

criterion to choose a routing plan thus becomes the minimal total cost, consisting of 

the direct cost in the first stage and the mean recourse cost at the second stage. We 

propose Two-Stage Model (TSM) for the fuzzy vehicle routing problem as follows. 

(Two-Stage Model , TSM) 
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Sak =Max (0, Qk - Rak ), Lak =Max(0, Rak - Qk) ; k=1, 2, …, m (17) 
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Sfk =Max (0, -Rfk) ;   Lfk =Max(0, Rfk) (19) 
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3.4 Equivalent Problem of Two-Stage Model  

As the two-stage model of equations (15)-(23) includes the “Fuzzy mean”, we 

have to decide how to define it before discussing the solution procedure of the 

problem. Here, we define the “Fuzzy mean” of a fuzzy number as its the 

generalized mean value (GMV) proposed by Lee and Li [7]. If t is a normalized 

triangular fuzzy number, t＝   ,, cba , its GMV can be obtained as: 

GMV(t)=(a + b + c ) / 3 (24) 

As Dfi and Rfk are normalized triangular fuzzy numbers with mode 0, we have 
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According to equations (18), Rfk can be rewritten as: 
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Notice that Rfk is a fuzzy number with mode 0 and satisfies  0
L

k
R ,  0

R

k
R , we 

can rewrite Sfk and Lfk as: 

Sfk =Max (0,-Rfk) = 
L
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Lfk =Max (0, Rfk) = 
R

k
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According to equation (24), the GMV of Sfk and Lfk can be obtained as: 
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L
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Then, we can obtain the equivalent problem of TSM as: 

(Equivalent Problem of TSM) 
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It is obvious that the two-stage model (15)-(23) of the fuzzy vehicle routing 

problem reduces to an ordinary 0-1 integer programming problem. . 

4 Ant Colony System method 

We propose an algorithm to obtain solution of the equivalent problem (30)-(37), 

it is based on the Ant Colony System (ACS) algorithm proposed by Dorigo and 

Gambardella [8]. The procedures of our algorithm are described as follows: 

[Step1] Set parameters: q0 (0 q01),  and  (0 ,  1),  and  (0 ,  

1). 

[Step2] Initialize solution.  

[Step2.1] Let 0=f0 (f0 is a given value) and set the initial pheromone level 

0
),(  ji (i,j=0, 1, 2, …, n). 

[Step2.2] Place m ants to the central depot 0, and define the set of customers that 

remain to be visited by ant k (k=1, 2, …, m) as Nk={i, i=1, 2, …, n}.  

[Step3] Construct solution. 

For each ant k, set i= 0 (denoting the customer where ant k is currently in), 

repeat the following Step3.1 to Step3.3 until ant k has completed its solution 

(Nk=Φ ). 

[Step3.1] Generate a random number q( ]1,0[q ), choose the customer j to be 

visited after customer i by applying the pseudo-random-proportional rule given 

by following equation (38): 
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r (
k

Nr  ) is a customer selected according to the probability pir given in 

following equation (40): 
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[Step3.2] Change the pheromone level by applying the local updating rule of 

equation (41): 

0
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  (41) 

[Step3.3] Remove customer j from Nk and set i=j as the current customer. Then 

return to Step3.1. 

[Step4] Denote the global best solution as Xgb and the objective value of equation 

(30) corresponds to Xgb is fgb. Update the pheromone level by applying the 

global updating rule of equation (42): 

ijijij
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[Step5] If the stopping criterion (maximum number of iterations G, in this paper) is 

met, then stop and output the best solution. Otherwise, go to Step 2. 

5 Computational Experiment 

To illustrate the proposed model and algorithm, we generated computational 

examples that the direct cost between every two customers or depot and the fuzzy 

demands of customers are given randomly from some uniform discrete 

distributions. 

(1) Compared to the chance-constrained model [9], it was demonstrated that the 

two-stage model has no infeasible solution because non-satisfaction of the capacity 

constraints is taken into the objective value as recourse costs. On the other hand, 

chance-constrained models provide very tight constraint to capacity of vehicles and 

therefore it has very few feasible solutions.  

(2) Applying the proposed ACS algorithm, the optimal solutions of 19 out of 20 

3-customer and 2-vehicle fuzzy vehicle routing problems were obtained and so the 

proposed algorithm is effective to small problems. Although iteration number to 

repeat step2 to step4 was set to 500, the proposed algorithm gave the optimal or 

best solutions at only the first iteration. It is very efficient to give problems’ solution 

and on the other hand, it is necessary to improve the algorithm to escape from the 

local optimal solution. 

6 Concluding Remarks 

For those situations when the manager cannot exactly specify customers’ 
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demand as either deterministic numbers or probabilistic random variables, it is 

natural and realistic to express the demand as fuzzy numbers. This study dealt with 

fuzzy vehicle routing problem and formulated a two-stage possibilistic 

programming model where the influence of the fuzziness of demands was treated as 

recourse cost. Defining fuzzy mean as the generalized mean value, the two-stage 

model is equivalent to an ordinary crisp vehicle routing problem with a linear 

objective function. Thus, its solution can be obtained easily by applying the 

proposed Ant Colony System algorithm. 

The proposed two-stage approach can not only take the fuzziness of customers’ 

demand into account, but also can avoid the computational complexity involved 

with calculating the summation of non-normalized fuzzy variables and comparing 

the non-normalized fuzzy objective values. The proposed Ant Colony System 

algorithm is effective to small problems and competitive with respect to 

computational effort. 

Like other Ant Colony System algorithms, the proposed Ant Colony System 

algorithm must be improved to be able to escape more effectively from local 

optimal solutions and solution quality should be confirmed by comparing the 

proposed algorithm with some optimization methods or meta-heuristic like Genetic 

Algorithms (GA) . 
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