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Abstract This paper treats unit disk graphs whose vertices are located in a square-shaped region
with fixed area α , and considers parametrized problems on this model. It shows that “fixed area"
is not a trivial restriction by proving that the maximum independent set problem and the minimum
dominating set problem are both W[1]-complete for unit disk graphs parameterized by area. On the
other hand, it shows an algorithm that solves the Hamiltonian circuit problem in O(m+ p2cp) time,
where m is the number of edges, p = 2α + o(α), and c is a constant number, i.e., this problem is
FPT for the parameter α . It also shows an algorithm that solves the k-coloring problem in O(kkp)
time, i.e., this problem is also FPT for the pair of parameters k and α .

Keywords Unit disk graphs, Hamiltonian circuit, FPT, W[1]-hard, Independent set, Dominating
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1 Introduction
Many combinatorial problems remain NP-hard even if they are restricted on unit disk

graphs. However such instances used for the proof of the NP-hardness occupy (certainly
polynomial, but) wide areas. Considering applications, e.g. ad-hoc networks [14], the ar-
eas are normally not so wide. So we consider unit disk graphs on a domain parameterized
by area α > 0: all centers of disks are on a square with area α , i.e., the length of a side of
the square is

√
α .

We consider the following four problems on this model: HAMILTONIAN CIRCUIT, k-
COLORING, MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET, which
are all NP-hard even on unit disk graphs. (For HAMILTONIAN CIRCUIT see [6]. For
the other problems see [4].) We show that HAMILTONIAN CIRCUIT can be solved in
O(m+ p2cp) time, where m is the number of edges, p = 2α + 2

√
2α + 1 = 2α + o(α),

and c= 1818. We next show that k-COLORING can be solved in O(kk·p) time. That is, they
are both in FPT (k-COLORING has two parameters α and k). On the contrary we prove
that MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET are both W[1]-
complete. From the latter results, we can see that fixed area is not a trivial restriction.
Our results are summarized in Table 1.

We briefly survey related work. Clark, Colbourn and Johnson [4] showed that MAX-
IMUM INDEPENDENT SET, MINIMUM VERTEX COVER are NP-complete even for unit
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Table 1: Summary of classical and parameterized complexity on problems for unit
disk graphs

Problem classical complexity parameterized by area
(our results)

HAMILTONIAN CIRCUIT NP-complete [6] FPT
k-COLORING NP-complete [4] FPT
MAXIMUM INDEPENDENT SET NP-complete [4] W[1]-complete
MINIMUM DOMINATING SET NP-complete [10] W[1]-complete

disk graphs. They showed that k-COLORING is NP-complete for unit disk graphs even k
is fixed by 3. Itai, Papadimitriou and Szwarcfiter [6] showed that HAMILTONIAN CIR-
CUIT is NP-complete for grid graphs. Since the class of grid graphs is a subclass of
unit disk graphs, HAMILTONIAN CIRCUIT is also NP-complete for unit disk graphs.
Some PTASs which solve MAXIMUM INDEPENDENT SET for unit disk graphs have
been shown [5, 12]. MINIMUM CONNECTED DOMINATING SET has a direct applica-
tion to virtual backbone, which is useful for routing in ad-hoc networks, and hence many
approximation algorithms for solving the problem on unit disk graphs have been stud-
ied [2, 7, 11]. Exact algorithms for unit disk graphs have been also studied. Alber [1]
showed that k-INDEPENDENT SET on λ -precision disk graph with bounded radius ratio
is FPT with running time 2O(

√
k)+nO(1), using geometric separation theorem. For a recent

survey on optimization problems on unit disk graphs, see [3].

2 General Property of Unit Disk Graphs of Fixed Area
A graph G = (V,E) with n vertices and m edges is a unit disk graph if its vertices

can be put in one-to-one correspondence with unit circles in the plane in such a way that
two vertices are joined by an edge if and only if the corresponding circles intersect (or
they are tangent). We assume n = O(m). In this paper the correspondences of vertices
and circles is given, i.e., a unit disk graph is represented by a set of unit circles in the
plane. Moreover, we focus on unit disk graphs whose vertices (the center of unit circles)
are placed in a square which is denoted by S , with area α . For considering this model,
the idea of clique partition are useful.

Definition 2.1 (Clique Partition).
Let G = (V,E) be a graph. For an integer p, a partition Q = {Q1,Q2, · · ·Qp} (Qi∩Q j =
/0 for 1≤ i < j ≤ p, and

⋃p
i=1 Qi =V ) of V is a clique partition if each Qi is a clique.

A unit disk graph on S has a clique partition with small size:

Lemma 2.2.
A unit disk graph G on S has a clique-partition with the size at most p = 2α +2

√
2α +

1 = 2α +o(α).

Proof. S can be covered by at most (
√

2α +1)2 = 2α +2
√

2α +1 tiles of square with
side 1/

√
2. Each tile induces a clique, i.e., the covering gives a clique partition.
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(a) (b)

Figure 1: (a) Example of the tiling. (b) Any vertex in the central tile is not adjacent to
vertices outside of the bold boundary.

Someone may cursorily thinks that the clique partition may directly make all problems
trivial. But it is not true. Certainly there are some W[1]-hard problems as shown in sec-
tion 4. Moreover even for HAMILTONIAN CIRCUIT, the clique partition is not sufficient
to obtain an FPT algorithm. (This is shown in section 3).

From now, we consider the clique partition Q = {Q1, · · · ,Qp} (p = 2α +2
√

2α +1)
defined in Lemma 2.2. We use honeycomb-like arrangement of squares as shown in
Fig. 1 (a). By using such an arrangement, if vi ∈ Qi is adjacent to v j ∈ Q j (i 6= j) then v j
lies in one of ∆(= 18) tiles close to Qi as shown in Fig. 1 (b). That is, ∆ means an upper
bound of the number of “adjacent” cliques for any cliques Qi ∈Q.

We define some signs in this paper: For vertex subsets X ,Y ⊆W , E(X ,Y ) denotes the
set of edges between X and Y , i.e., E(X ,Y ) = {xy ∈ E|x ∈ X ,y ∈ Y}. E(X) = E(X ,X) =
{xy ∈ E|x,y ∈ X}. Two edges are independent if they have no common end vertices.

3 Hamiltonian Circuit
HAMILTONIAN CIRCUIT is a problem of deciding whether or not a given graph has a

Hamiltonian circuit, which is a circuit containing every vertex in the graph just one time.
In this section we show HAMILTONIAN CIRCUIT on unit disk graphs is FPT w.r.t. the
parameter α . We mainly present two lemmas for helping us. One is for decreasing the
number of Hamiltonian circuit that we should consider (Lemma 3.2), and the other is for
limiting edges to be examined (Lemma 3.3).

Definition 3.1.
A canonical Hamiltonian circuit C is a Hamiltonian circuit such that for arbitrary i, j ∈
{1, · · · , p}, i 6= j, C contains at most two edges in E(Qi,Q j).

Lemma 3.2.
G has a Hamiltonian Circuit if and only if G also has a canonical Hamiltonian circuit.

Proof. “If" part is trivial, and hence we show “only if" part. We assume that G has a
Hamiltonian circuit C0. We also assume there is a pair Qi,Q j ∈Q such that C0∩E(Qi,Q j)
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Figure 2: Example of constructing C′0 (b) by replacing edges in C0 (a)

includes more than two edges. It is enough to show that there is another Hamiltonian
circuit C′0 such that C′0 has at most two edges in E(Qi,Q j) and both C0 and C′0 have the
same edges in E \ (E(Qi)∪E(Q j)∪E(Qi,Q j)). (Because we can apply this property for
every part of Qi′ ,Q j′ ∈Q having more than two edges in C0 ∩E(Qi′ ,Q j′) one by one.)
We direct all edges in C0 in the same direction along the circuit. Let mi j (resp., m ji) be
the number of edges in C0∩E(Qi,Q j) which is directed from Qi to Q j (resp., Q j to Qi).
Since we assumed mi j +m ji > 2, we can also assume mi j ≥ 2 without loss of generality.
Then we can decrease mi j by two by changing a part of the circuit as shown in Fig. 2.
By applying this procedure repeatedly, mi j becomes one or zero, i.e., mi j +m ji is at most
two.

We consider a graph H0 = (U,F0) obtained from G by contracting each Qi to a vertex
ui. Let H be a multigraph obtained from H0 by doubling an edge uiu j if |E(Qi,Q j)| ≥ 2.
For any vertex ui ∈U in H, the number of vertices adjacent to ui is at most ∆ = 18.

A spanning circuit, or an s-circuit, in short is a circuit that passes all vertices of H.
By Lemma 3.2, if G has a Hamiltonian circuit, G has a canonical Hamiltonian circuit C.
The graph obtained from C by contracting Qi to ui is an s-circuit. Since the maximum
length of an s-circuit in H is ∆p, and hence the number of possible s-circuits in H is at
most ∆∆p. From this fact, we can decide the existence of a Hamiltonian circuit in G by
the following way: Enumerate all possible s-circuits D, and check whether a canonical
Hamiltonian circuit corresponding to D exists or not. We show an algorithm for deciding
whether G has a Hamiltonian circuit corresponding to a given s-circuit D in time O(p2)
with a preprocessing requiring O(m) computation time. Note that if we naively enumerate
all possible combinations of edges for each pair of vertices of H, then the computation
time becomes Ω(np), which is not FPT. We show that choosing at most 4(2∆−1)2 edges
between each pair Qi,Q j as candidates is sufficient to examine the existence of such a
canonical Hamiltonian circuit.

Lemma 3.3.
We assume that G has a Hamiltonian circuit C corresponding to an s-circuit in H. Then for
arbitrary i, j ∈ {1,2, · · · , p} (i 6= j), there exists an edge subset E ′i j ⊆ E(Qi,Q j), (|E ′i j| ≤
4(2∆−1)2), such that G has a canonical Hamiltonian circuit C′ satisfying the following
two conditions:
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1. C and C′ consists of the same edges except in E(Qi)∪E(Q j)∪E(Qi,Q j), i.e., C \
(E(Qi)∪E(Q j)∪E(Qi,Q j)) =C′ \ (E(Qi)∪E(Q j)∪E(Qi,Q j)),

2. C′∩E(Qi,Q j)⊆ E ′i j.

Proof. In this proof E ′i j is expressed as E ′ for notational simplicity. We show an algorithm
for constructing E ′. First, we set E ′ = /0. We compute an arbitrary maximal matching M
of a bipartite graph B = (Qi ∪Q j,E(Qi,Q j)) whose parts are Qi and Q j, (If there is a
matching with size at least two then we choose |M| to be |M| ≥ 2.) There are two cases :

1. Case: |M| ≥ 4∆−2. Choose arbitrary 4∆−2 edges from M and add them to E ′.
2. Otherwise. Add all edges in M to E ′. For each vertex v to which an edge in M is

incident, choose at most 2∆− 1 arbitrary edges incident to v as much as possible
from E(Qi,Q j). Add these edges to E ′.

For resulting E ′, |E ′| ≤ (4∆−2)·2 ·(2∆−1)= 4(2∆−1)2. We show that G has a canonical
Hamiltonian Circuit C′ which consists of edges in E ′.

Assume C∩E(Qi,Q j) 6= /0. C∩E(Qi,Q j) consists of one or two edges, since it is
a canonical Hamiltonian circuit. If C∩E(Qi,Q j) ⊆ E ′, then we must do nothing. (The
desired canonical Hamiltonian circuit C′ is already obtained.) Then assume that there is
at least one edge e0 such that e0 ∈ C∩E(Qi,Q j) and e0 /∈ E ′. In C \E(Qi)∪E(Q j)∪
E(Qi,Q j), there exist at most 4∆−4 edges incident to vertices in Qi∪Q j. This is because
C has at most 2∆ edges vvi with v /∈ Qi and vi ∈ Qi for an arbitrary Qi. Let E ′(u)⊆ E ′ be
an edge set incident to u.

1. Case: |M|= 1. From the algorithm for constructing E ′, |M|= 1 means that there is
no matching with size larger than one in B. Hence there is a vertex, say v, in Qi∪Q j
such that all edges in E(Qi,Q j) are incident to v. That is, E ′=E ′(v). Assume v∈Qi
w.l.o.g. Clearly C∩E(Qi,Q j) consists of one edge e0 = vw. From the assumption
of e0 /∈ E ′ and the algorithm for constructing E ′, it follows that |E ′(v)|= 2∆. Hence
there is at least one edge e= vu∈ E ′(v) such that u∈Q j is not incident to any edges
in C. Then we get C′ from C by replacing e0 = vw with e = vu and uw.

2. Case: 2≤ |M| ≤ 4∆−3. Note that M ⊆ E ′ in this case. From that M is a maximal
matching, it follows that there is an edge e′ ∈M which is adjacent with e0, i.e., there
is a vertex v incident to both e0 and e′. Assume w.l.o.g. v ∈ Qi. Let e0 = vw and
e′ = vw′. From the assumption e0 = vw /∈M ⊆ E ′. From the assumption that e0 =
vw /∈ E ′, it follows that E ′(v) is a proper subset of E({v},Q j). and |E ′(v)| = 2∆.
Thus there at least two edges e′′ = vw′′,e′′′ = vw′′′ ∈ E ′(v) such that w′′ and w′′′ are
not incident to any edge in C \ (E(Qi)∪E(Q j)∪E(Qi,Q j)). We can easily replace
e0 = vw with e′′ = vw′′ and w′′w (or e′′′ = vw′′′ and w′′′w).

3. Case: |M| ≥ 4∆− 2. Note that |M∩E ′| = 4∆− 2 in this case. Then there exist at
least two edges e′,e′′ ∈M∩E ′ such that e′ and e′′ are independent of all edges in
C \ (E(Qi)∪E(Q j)∪E(Qi,Q j)). Clearly we can use e′,e′′ instead of (at most two)
edges in C∩E(Qi,Q j) as the former cases.

Now we have the algorithm: Make a subgraph G′ of G by selecting E ′i j ⊆ E(Qi,Q j)

consisting of at most 4(2∆−1)2 edges for each pair of Qi and Q j. That is, G′=(V,
⋃

i, j E ′i j).
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There are at most ∆∆p possible s-circuits in H. For each s-circuit D, we determine whether
or not G′ has a canonical Hamiltonian circuit corresponding to D by enumerating all pos-
sible candidates of edges from every E ′i j. The detailed discussion is as follows.

Theorem 3.4.
HAMILTONIAN CIRCUIT is solvable in time O(m + cp p2) for unit disk graphs whose
vertices are placed in S , which is a asuare with area α , where p = 2α +2

√
2α +1 and

c = 1818.

Proof. Constructing G′ can be done in O(m) time. The number of vertices and edges of
H is at most p and ∆p, respectively. There are at most ∆∆p possible s-circuits in H.

G′ has at most ∆p/2 pairs (Qi,Q j) having an edge between them. For each of such
pairs (Qi,Q j), we choose in order at most two edges from E ′i j for candidates for a canon-
ical Hamiltonian circuit corresponding D. The number of possible such candidates of
whole G′ is at most (4(2∆−1)2)2× ∆p

2 = 8(2∆−1)4∆p.
For each pair of D and E ′, determining whether or not E ′ leads a canonical Hamil-

tonian circuit corresponding to D is easily determined in time O(p). Therefore the total
computation time is O(m+∆∆p ·8(2∆−1)4∆p · p) = O(m+ p2∆∆p) = O(m+ p2cp).

4 Other Problems
4.1 k-Coloring

Let G be a unit disk graph on S . In this section, we show an FPT algorithms for
k-COLORING on unit disk graphs on S . G is called k-colorable if there is a function
Γ : V →{1,2, · · · ,k} such that Γ(v) 6= Γ(w) for all vw ∈ E. k-COLORING is a problem for
determining where or not a given graph G is k-colorable.

Theorem 4.1.
k-Coloring for unit disk graphs on S is solvable in time O(kk·p).

Proof. If G is k-colorable, G does not include a clique with size larger than k. G has
a clique partition Q = {Q1,Q2, · · · ,Qp}. Hence we can reject G if it has more than kp
vertices. For a graph with at most kp vertices, k-coloring can be solved in O(kk·p) time
by testing all possible assignments.

4.2 Maximum Independent Set
The previous results are on tractability. On the other hand, in this and the next sub-

sections, we show intractable problems for fixed area unit disk graphs. For a graph
G = (V,E), a vertex subset W ⊆ V is an independent set if for every v,w ∈W there is
no edge between them, i.e., vw /∈ E. The size of an independent set W is |W |. MAXIMUM
INDEPENDENT SET is a problem of deciding whether or not a given graph has an inde-
pendent set with size of a given integer k. We consider this problem for unit disk graphs
parameterized by area α . The major parameterized approach for MAXIMUM INDEPEN-
DENT SET is to use the parameter k. We call this problem k-INDEPENDENT SET. We find
a close relation between these two parameterized problems.
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Lemma 4.2.
There exists an FPT algorithm for MAXIMUM INDEPENDENT SET for unit disk graphs
parameterized by α if and only if there exists an FPT algorithm for k-INDEPENDENT SET
for unit disk graphs.

Proof. “If” part is easy. For a unit disk graph G on the square S , the size of independent
set is at most p. Then by solving k-INDEPENDENT SET for all k = 1,2, · · · , p MAXIMUM
INDEPENDENT SET for G can be solved. Thus “if” part follows.

To show “only if” part, we assume that there exists an FPT algorithm Ψ(G,α) which
solves MAXIMUM INDEPENDENT SET for unit disk graphs on S in time f ′(α)poly(|G|),
where α is the area of S . Given an arbitrary unit disk graph G0 and an integer k, we
show an algorithm for computing whether or not G contains independent set of size k. Let
G1, · · · ,Gk′ be connected components of G. If k′ ≥ k then G has an independent set of size
k clearly. Hence we assume k′ < k. By using a greedy algorithm, we can easily obtain a
maximal (not maximum) independent set Si for every Gi. We assume |S1|+ · · ·+ |Sk′ |< k,
otherwise G has an independent set of size k. For any Gi, from that it is connected, it
follows that the diameter of Gi is at most 3|Si|−1< 3k−1. From this, we can observe that
all vertices in each Gi are in a square of area (2(3k−1))2 < 36k2. Applying Ψ(Gi,36k2)
for each i = {1,2, · · · ,k′}, we can get a maximum independent set of Gi in time at most
f (36k2)poly(|Gi|). The total computing time is T = O

(
km+ k f (36k2) ·poly(n)

)
.

Marx [8, 9] showed that k-INDEPENDENT SET is W[1]-complete for unit disk graphs.
Combine Lemma 4.2 with [8, 9], we get the following theorem.
Theorem 4.3.
MAXIMUM INDEPENDENT SET on unit disk graphs parameterized by area α is W[1]-
complete.

4.3 Minimum Dominating Set
For MINIMUM DOMINATING SET, we can prove a similar result. The argument for

getting the following results are similar to one for MAXIMUM INDEPENDENT SET shown
in the previous section, and are omitted here.
Lemma 4.4.
There exists an FPT algorithm of MINIMUM DOMINATING SET for unit disk graphs
parameterized by α if and only if There exists an FPT algorithm of k-DOMINATING SET
for unit disk graphs.
Theorem 4.5.
MINIMUM DOMINATING SET on unit disk graphs parameterized by area α is W[1]-
complete.

5 Conclusion
We considered unit disk graphs restricted in a square with area α and consider some

combinatorial problems on unit disk graphs parameterized by α . We showed HAMILTO-
NIAN CIRCUIT and k-COLORING are both FPT, but MAXIMUM INDEPENDENT SET and
MINIMUM DOMINATING SET are both W[1]-hard. Unit disk graphs on small area has
wide applications, and many problems must be examined on this model.
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