
A Full-Newton Step Infeasible Interior-Point
Algorithm for Linear Programming Based on a

Special Self-Regular Proximity∗

Zhong-Yi Liu1,† Yue Chen2,‡

1College of Science, Hohai University, Nanjing 210098, China.
2Jincheng College, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.

Abstract This paper proposes an infeasible interior-point algorithm with full-Newton step for
linear programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110–
1136, 2006). We introduce a special self-regular proximity to induce the feasibility step and to
verify quadratic convergence. The result of polynomial complexity coincides with the best-known
iteration bound for infeasible interior-point methods, namely, O(n logn/ε).
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1 Introduction
We are concerned with the (LP) problem given in the following standard form:

(P) min cT x

s.t. Ax = b, x≥ 0,

and its associated dual problem:

(D) max bT y

s.t. AT y+ s = c, s≥ 0,

where c,x,s ∈ Rn, b,y ∈ Rm and A ∈ Rm×n is of full row rank.
For a comprehensive learning about interior-point methods (IPMs), we refer to Roos

et al. [5]. In Roos [6], a full-Newton step infeasible interior-point algorithm for linear
programming (LP) was presented and he also proved that the complexity of the algorithm
coincides with the best known iteration bound for infeasible IPMs. In Liu and Sun [1],
Mansouri and Roos [2], they defined the feasibility step by special search directions,
respectively. Such directions can be seen as parameterized affine scaling directions.
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Recently Peng et al. [3] introduced a new class of primal-dual IPMs based on self-
regular proximities. These methods do not use the classic Newton directions. Instead they
use a direction that can be characterized as a steepest descent direction (in a scaled space)
for a so-called self-regular barrier function. Each such barrier function is determined by
a simple univariate self-regular function, called its kernel function. Salahi [7] extended
the method in Peng and Terlaky [4] to infeasible IPMs. For both of them, the center
path neighborhood are defined by the proximity function and they don’t utilize any inner
iteration to get centered.

Inspired by Salahi [7], we develop an infeasible IPMs with full-Newton steps for
(LP). The search direction of the feasibility step is induced by the proximity function.
The feasibility step of the latter is due to the classic primal-dual Newton direction, which
is induced by the logarithmic barrier function. And the proximity function is used to
verify the quadratic convergence in this paper. We also use a norm-based proximity to
define the central neighborhood. Similar to the process of the analysis, we can get the
same result of polynomial complexity, that is, n logn/ε , which is the best currently for
infeasible IPMs.

Throughout the paper ‖ · ‖ denotes the l2-norm. We use Φ to denote the proximity
function though Φ(v) and Φ(x,s; µ) have different domains.

2 The statement of algorithm
As usual for infeasible IPMs we assume that the initial iterates (x0,y0,s0) are as fol-

lows:

x0 = s0 = ζ e, y0 = 0, µ0 = ζ 2,

where e is the all-one vector of length n, µ0 is the initial dual gap and ζ > 0 is such that

‖x∗+ s∗‖∞ ≤ ζ ,

for some optimal solution (x∗,y∗,s∗) of (P) and (D).
After defining r0

b and r0
c as the initial residual vectors:

r0
b = b−Ax0,

r0
c = c−AT y0− s0,

we recall the main ideas underlying the algorithm in Roos [6]. For any ν with 0 < ν ≤ 1
we consider the perturbed problem (Pν), defined by

(Pν) min{(c−νr0
c)

T x : Ax = b−νr0
b, x≥ 0},

and its dual problem (Dν), which is given by

(Dν) max{(b−νr0
b)

T y : AT y+ s = c−νr0
c , s≥ 0}.

Note that if ν = 1 then x = x0 yields a strictly feasible solution of (Pν), and (y,s) =
(y0,s0) a strictly feasible solution of (Dν). Due to the choice of the initial iterates we may
conclude that if ν = 1 then (Pν) and (Dν) each have a strictly feasible solution, which
means that both perturbed problems then satisfy the well known interior-point condition
(IPC).
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Lemma 1. ([6, Lemma 1.1]) The perturbed problems (Pν) and (Dν) satisfy the IPC for
each ν ∈ (0,1], if and only if the original problems (P) and (D) are feasible.

Assuming that (P) and (D) are feasible, it follows from Lemma 1 that the problems
(Pν) and (Dν) satisfy the IPC, for each ν ∈ (0,1]. And then their central paths exist. This
means that the system

b−Ax = νr0
b, x≥ 0, (1)

c−AT y− s = νr0
c , s≥ 0, (2)

xs = µe (3)

has a unique solution for every µ > 0, where xs denotes a Hadamard (componentwise)
product of two vectors x and s. If ν ∈ (0,1] and µ = νζ 2 we denote this unique solution
in the sequel as (x(ν),y(ν),s(ν)). As a consequence, x(ν) is the µ-center of (Pν) and
(y(ν),s(ν)) the µ-center of (Dν). Due to this notation we have, by taking ν = 1,

(x(1),y(1),s(1)) = (x0,y0,s0) = (ζ e,0,ζ e).

One measures proximity of iterates (x,y,s) to the µ-center of the perturbed problems (Pν)
and (Dν) by the quantity δ (x,s; µ), which is defined as follows:

δ (x,s; µ) := δ (v) :=
1
2
‖v− v−1‖, where v :=

√
xs
µ
. (4)

Initially one has x = s = ζ e and µ = ζ 2, whence v = e and δ (x,s; µ) = 0. In the sequel
assuming that at the start of each iteration, δ (x,s; µ) is smaller than or equal to a (small)
threshold value τ > 0. So this is certainly true at the start of the first iteration.

For the feasibility step in Roos [6] they used search directions ∆ f x, ∆ f y and ∆ f s that
are (uniquely) defined by the system

A∆ f x = θνr0
b, (5)

AT ∆ f y+∆ f s = θνr0
c , (6)

s∆ f x+ x∆ f s = µe− xs. (7)

In the centering steps, starting at the iterates (x,y,s) = (x f ,y f ,s f ) and targeting at the
µ-centers, the search directions ∆x,∆y,∆s are the usual primal-dual Newton directions,
(uniquely) defined by

A∆x = 0,
AT ∆y+∆s = 0,
s∆x+ x∆s = µe− xs.

Denoting the iterates after a centering step as x+, y+ and s+, we recall the following
results from Roos [5].

Lemma 2. If δ := δ (x,s; µ) ≤ 1, then the primal-dual Newton step is feasible, i.e., x+

and s+ are nonnegative, and (x+)T s+ = nµ . Moreover, if δ := δ (x,s; µ) ≤ 1/
√

2, then
δ (x+,s+; µ)≤ δ 2.
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The centering steps serve to get iterates that satisfy xT s= nµ+ and δ := δ (x,s; µ)≤ τ ,
where τ is (much) smaller than 1/

√
2. By using Lemma 2, the required number of center-

ing steps can easily be obtained. Because after the µ-update we have δ = δ (x f ,s f ; µ+)≤
1/
√

2, and hence after k centering steps the iterates (x,y,s) satisfy

δ (x,s; µ+)≤ (
1√
2
)2k

.

From this one easily deduces that no more than

log2(log2
1
τ2 ) (8)

centering steps are needed.
Defining

d f
x :=

v∆ f x
x

, d f
s :=

v∆ f s
s

, (9)

with v as defined in (4). The system which defines the search directions ∆ f x, ∆ f y and
∆ f s, can be expressed in terms of the scaled search directions d f

x and d f
s as follows:

Ād f
x = θνr0

b,

ĀT ∆ f y
µ

+d f
s = θνvs−1r0

c ,

d f
x +d f

s = v−1− v,

where

Ā = AV−1X , V = diag(v), X = diag(x).

Note that the right-hand side of the third equation in the system is the negative gradient
induced by the logarithmic barrier function

Ψ(v) :=
n

∑
i=1

ψ(vi), vi =

√
xisi

µ
,

whose kernel function is

ψ(t) =
1
2
(t2−1)− log t.

In this paper the feasibility step is a slight modification of the classic primal-dual Newton
direction. The feasibility direction is defined by a new system as follows

Ād f
x = θνr0

b,

ĀT ∆ f y
µ

+d f
s = θνvs−1r0

c ,

d f
x +d f

s = −∇Φ(v),
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where Φ(v) is

Φ(v) :=
n

∑
i=1

φ(vi),

and the kernel function of Φ(v) is defined as

φ(t) :=
1
2
(t− 1

t
)2.

Since φ ′(t) = t−1/t3, the third equation in the system can be written as

d f
x +d f

s = v−3− v. (10)

The next lemma focus on the effect of the feasible search direction induced by the
self-regular proximity function.

Lemma 3. If Φ(v) := Φ(x,s; µ) ≤ 2, then the primal-dual Newton step is feasible, i.e.,
x+ and s+ are nonnegative, and (x+)T s+ = nµ . Moreover, if Φ(v) := Φ(x,s; µ)≤ 1, then
Φ(x+,s+; µ)≤ ( 1√

2
Φ(v))2.

The following lemma quantifies the effect on the proximity measure if v is replaced
by ṽ =

√
1−θv.

Lemma 4. Let (x,s) be a positive primal-dual pair and µ > 0 such that xT s = nµ .
Moreover let Φ(v) = Φ(x,s; µ) and ṽ :=

√
1−θv. Then

Φ(ṽ) =
1

1−θ
Φ(v)+

θ 2n
1−θ

.

3 Main Result
Defining

ρ(Φ(v)) := (Φ(v)+1)+
√
(Φ(v)+1)2−1,

and

ωi := ωi(v) :=
1
2

√
|d f

xi|2 + |d
f
si|2,

and

ω := ω(v) := ‖(ω1, . . . ,ωn)‖,

one can get the following result.

Lemma 5. Assuming v−2 +d f
x d f

s > 0, one has

2Φ(v f )≤ 2
1−θ

Φ(v)+
θ 2n

1−θ
+

2ω2

1−θ
+

2(1−θ)ρ(Φ(v))4ω2

1−2ρ(Φ(v))2ω2 .
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At this stage we decide to choose

τ =
1
4
, θ =

α
4
√

n
, α =

1
20
√

n
, (11)

one can verify that

ω ≤ 1
2
√

2
⇒ Φ(v f )≤ 1. (12)

Finally we can get the following result of polynomial complexity.

Lemma 6. The total number of inner iterations is bounded above by

320n log
max{nζ 2,‖r0

b‖,‖r0
c‖}

ε
.

4 Concluding remarks
In this paper we introduce a self-regular proximity in the infeasible interior-point algo-

rithm with full-Newton step for linear programming. We also use a norm-based proximity
to define the central neighborhood. We only discuss a special self-regular proximity in
this paper, our future work will focus on more general self-regular proximities.
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