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Abstract The selection of parameters in the support vector machine (SVM) is an important step
for constructing a high performance learning machine. Minimizing the bound of leave-one-out
(LOO) error is an efficient and time-economized approach for the SVM to select parameters. In
fact, some famous bounds have been proposed. These researches focus on their issues for binary
classification but not multiclass problem. In this paper we derive the leave-one-out error bound for
the Crammer-Singer multiclass SVM. The numerical experiments on some benchmarks show that
our method is reasonable.
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1 Introduction
The support vector machine (SVM)[11]has become one of the most popular methods

in machine learning for both regression and classification problems during the last years.
It performs structural risk minimization introduced to machine learning by Vapnik [12],
and has yielded excellent generalization performance. However, SVM formulations re-
quire the user to set parameters which govern the training process, and those parameter
settings can have a significant affect on the performance of engine. Clearly, the best per-
formance is realized with an optimum choice of parameters. The most common approach
to parameter selection is to realize an exhaustive grid search over the parameter space to
find the best settings. Unfortunately, it is of little use in practical application due to its
result of unacceptably long run time. Some other method such as cross-validation gives
good effectiveness. It needs the machine learning engine to be trained multiple times in
order to obtain a single performance for a single parameter setting.

The leave-one-out (LOO) error provides an almost unbiased estimate for the genera-
tion error and can be considered as a reliable criteria for the selection of parameters . But
the computation of the LOO error is extremely time consuming. Thus the methods are
sought to speed calculation of LOO error , or bound it with an easily computed quantity.
Currently, there are some successfully bounds proposed for support vector classification
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machine [8, 13, 7], support vector regression machine[10, 4] and support vector ordinal
regression machine [14].

In this paper, we concentrate on the bound of LOO error for the Crammer-Singer mul-
ticlass SVM [5] which solves the multiclass classification. It is based on “all together"
idea by solving one optimization problem and applies the maximum margin principle
used in binary SVM. This approach has been applied in many fields such as text classi-
fication [6],bioinformatics [1]. As we discussed above, selecting the optimal parameters
for the Crammer-Singer multiclass SVM is also pivotal. Our approach is similar to the
one described by Joachims[9] for the SVM classifier and can obtain the LOO error bound
by computing all samples only once.

This paper is structured as follows. The Crammer-Singer multiclass SVM is reviewed
in Section 2. In Section 3, we describe our derivation method for the bound of LOO
error. Section 4 is some numerical results on benchmarks which are used to confirm the
efficiency of our algorithm. Some conclusions are discussed in the last section.

2 Crammer-Singer multiclass SVM
In this section, we introduce Crammer-Singer multiclass SVM [5]. Consider the train-

ing set

T = {(x1,y1), · · · ,(xl ,yl)} ∈ (X ×Y )l , (1)

where xi ∈X ⊆ Rn is the input, and yi ∈ Y = {1, · · · ,k} is the output or the class label.
The input x is mapped into a Hilbert space H by a function x = Φ(x) : x ∈ Rn→ x ∈H .
We need to find k hyperplanes to construct the decision function

f (x) = arg max
r=1,··· ,k

l

∑
i=1

αr
i K(xi,x), (2)

where K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function.
To get αr

i ,r = 1, · · · ,k, i = 1, · · · , l in the decision function (2), we need solve the dual
problem of Crammer-Singer multiclass SVM

max
α

W (α) = −1
2

l

∑
i=1

l

∑
j=1

K(xi · x j)αT
i α j−

l

∑
i=1

αT
i ei, (3)

s.t.
k

∑
r=1

αr
i = 0, i = 1, · · ·, l, (4)

αr
i 6 0, i f yi 6= r, i = 1, · · ·, l.r = 1, · · ·,k, (5)

αr
i 6C, i f yi = r, i = 1, · · ·, l.r = 1, · · ·,k, (6)

where α =(α1, · · · ,αl),αi =(α1
i , · · · ,αk

i )
T, i= 1, · · · , l, ei =(e1

i , ···,ek
i )

T,er
i = 1−δyi,r, i=

1, · · · , l,r = 1, · · · ,k, and K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function.

3 Derivation of the LOO error bound
In order to derive the LOO error bound we give the definition of the LOO error and

the support vector in advance.
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Definition 1. (LOO error) Given the training set T t = T \{(xt ,yt)}, t = 1, · · · , l, where
T is the training set given by (1). Suppose that fT t (x) is the decision function obtained on
the training set T t , then the LOO error is defined as

RLOO(T ) =
1
l

l

∑
t=1

c(xt ,yt , fT t (xt)), (7)

where c(x,y, f (x)) is the 0-1 loss function.

Definition 2. (Support Vector) Suppose that α = (α1, · · · ,αl),αi = (α1
i , , · · · ,αk

i )
T, i =

1, · · · , l, is the optimal solution of the dual problem (3) ∼(6) for the training set (1). Then
(1). The input xi is called a margin support vector about α = (α1, · · · ,αl), αi =

(α1
i , , · · · ,αk

i )
T, i = 1, · · · , l , if the corresponding multiplier vector αi = (α1

i , · · · ,αk
i )

T 6=
0̄, where 0̄ represents the vector with 0 value for every element, and there exists at least a
component αr

i ∈ (0,C) and the others components are nor equal to C. Define the margin
support vector set is the following index set

SV = {i|αi 6= 0̄,and ∃r,αr
i ∈ (0,C),yi = r;αr

i 6=C,yi 6= r, i = 1, · · · , l}; (8)

(2). The input xi is called a non-margin support vector about α = (α1, · · · ,αl), αi =
(α1

i , , · · · ,αk
i )

T, i = 1, · · · , l , if the corresponding multiplier vector αi = (α1
i , · · · ,αk

i )
T 6=

0̄, where 0̄ represents the vector with 0 value for every element, and there exists at least a
component αr

i =C. Define the non-margin support vector set is the following index set

SVC = {i|αi 6= 0̄,and ∃r,αr
i =C, i = 1, · · · , l}; (9)

(3).The input xi is called a non-support vector, if the corresponding multiplier vector
αi = (α1

i , · · · ,αk
i )

T = 0̄, where 0̄ represent the vector with 0 value for each element,

αr
i = 0,r = 1, · · · ,k. (10)

Now, we address the derivation of LOO error bound for the Crammer-Singer multi-
class SVM. After removing point {(xt ,yt)}, the training set becomes T t = T \{(xt ,yt)},
the corresponding dual problem is

max
α̃

Wt(α̃) = −1
2 ∑

i∈I\t
∑

j∈I\t
K(xi,x j)α̃T

i α̃ j− ∑
i∈I\t

α̃T
i ei, (11)

s.t.
k

∑
r=1

α̃r
i = 0, i ∈ I \ t, (12)

α̃r
i ≤ 0 i f yi 6= r, i ∈ I \ t,r = 1, · · ·,k, (13)

α̃r
i ≤C yi = r, i ∈ I \ t,r = 1, · · ·,k, (14)

where α̃ = (α̃1, · · · , α̃l), α̃i = (α̃1
i , · · · , α̃k

i )
T, i ∈ I \ t, ei = (e1

i , · · ·,ek
i )

T,er
i = 1− δyi,r, i ∈

I \ t,r = 1, · · · ,k, and I = {1,2, · · · , l}.
In order to getting the LOO error bound, we give the following lemma firstly.
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Lemma 1. Given the training set T (1), suppose α =(α1, · · · ,αl),αi =(α1
i , · · · ,αk

i )
T, i=

1, · · · , l is the optimal solution of dual problem (3)∼(6). If the decision functions fT (x)
and fT t (x) are obtained by Crammer-Singer multiclass SVM for the training set T and
T t = T \{(xt ,yt)} respectively, then we have

(1) If αt 6= 0̄, t ∈ SV , and the removing point (xt ,yt) belongs to the r-th class, when an
error occurs on this point by the decision function fT t (x) , the following inequality holds

1
αr

t
(

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV |t
αT

t αiK(xt ,xi))−
1
2

αr
t s∗Tm s∗m < 0, (15)

where
s∗m = (0, · · · ,0,1,0, · · · ,0,−1,0, · · · ,0)T , (16)

and s∗m ∈ Rk, the r-th element of vector s∗m is 1, the m-th element of vector s∗m is -1, the
rest elements are 0, m ∈ {1,2, · · · ,r− 1,r+ 1, · · · ,k} and SV is the index set of margin
support vector given by (8);

(2) If αt = 0̄, where 0̄ represent the vector with 0 value for each element, it follows
that fT (x) = fT t (x).

Proof: (1) Assume that αt 6= 0̄, t ∈ SV = {i|αi 6= 0̄,and ∃r,αr
i ∈ (0,C),yi = r;αr

i 6=
C,yi 6= r, i = 1, · · · , l} and the removing point (xt ,yt) belongs to the r-th class. We have
0<αr

t <C according to the equations (4)∼(6), namely, the t-th points is a margin support
vector. From the solution α̃ of problem (11)∼(14), produce a feasible solution of problem
(3)∼(6) by

βi =





α̃i, i f α̃i = 0̄ and α̃i ∈ SVCt ;
α̃i, i f i ∈ SV t ;
αr

t s∗m, i f i = t,
(17)

where s∗m = (0, · · · ,0,1,0, · · · ,0,−1,0, · · · ,0)T , s∗m ∈ Rk, the r-th element of the vector s∗m
is 1, the m-th element of the vector s∗m is -1, the rest elements are 0 and m ∈ {1,2, · · · ,r−
1,r+ 1, · · · ,k}, and SV t and SVCt are the sets of index corresponding to the margin and
non-margin support vectors in the solutions of problem (11)∼(14) respectively. It is easy
to see that

β r
i ≤ 0,yi 6= r, (18)

β r
i ≤C,yi = r, (19)
k

∑
i=1

β r
i = 0, i = 1, · · · , l. (20)

So β is a feasible solution of the problem (3)∼(6). After the transformation, W (β ) can be
written as

W (β ) =Wt(α̃)− 1
2
(αr

t )
2s∗Tm s∗mK(xt ,xt)+αr

t − ∑
i∈SV t

αr
t s∗Tm α̃iK(xt ,xi). (21)

Similarly let us construct a feasible solution γ̃ of (11)∼(14) based on the solution α
of (3)∼(6).

γ̃i =

{
αi, if αi = 0̄ and αi ∈ SVC;
αi, if i ∈ SV \ t,

(22)
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where SV and SVC are the index sets given by (8) and (9) respectively. SV \ t excludes the
index t corresponding the removing point. It is easy to see that

γ̃r
i ≤ 0,yi 6= r, (23)

γ̃r
i ≤C,yi = r, (24)
K

∑
i=1

γ̃r
i = 0, i ∈ I \ t, (25)

where I = {1,2, · · · , l}. So γ̃ is a feasible solution of the problem (11)∼(14). After the
transformation, Wt(γ̃) can be written as

Wt(γ̃) =W (α)+
1
2

αT
t αtK(xt ,xt)−αr

t + ∑
i∈SV\t

αT
t αiK(xt ,xi). (26)

Due to W (α)≥W (β ),Wt(α̃)≥Wt(γ̃) and the equation (21) and (26), it results in the
following inequality

∑
i∈SV t

αr
t s∗Tm α̃iK(xt ,xi)≥

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV\t
αT

t αiK(xt ,xi)−
1
2
(αr

t )
2s∗Tm s∗mK(xt ,xt). (27)

As the result 0 < αr
t <C, it can be written as

∑
i∈SV t

s∗Tm α̃iK(xt ,xi)≥

1
αr

t
(

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV\t
αT

t αiK(xt ,xi))−
1
2

αr
t s∗Tm s∗mK(xt ,xt). (28)

According to the formulation of decision function (2), we know that an error occurs on
the removing point (xt ,yt) by fT t (x) in the condition that, there exists s∗m like the equation
(16), m ∈ {1, · · · ,r−1,r+1, · · · ,k}, to make ∑i∈SV t s∗Tm α̃iK(xt ,xi) < 0. This means also
that

1
αr

t
(

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV\t
αT

t αiK(xt ,xi))−
1
2

αr
t s∗Tm s∗mK(xt ,xt)< 0. (29)

(2) Assume that αt = 0̄: We can obtain w̃r = wr,r = 1, · · · ,k from the KKT condition.
It follows that fT t (x) = fT (x). �

From Lemma 1 we can get the following theorem

Theorem 2. The LOO error bound for Crammer-Singer multiclass SVM is given by

RLOO(T ) ≤ 1
l
(|{t|t ∈ SV,∃s∗m,s.t.

1
αr

t
(

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV |t
αT

t αiK(xt ,xi))

−1
2

αr
t s∗Tm s∗mK(xt ,xt)< 0}|+ |SVC|, (30)
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where | · | represents the number of the elements in the set, s∗m is given by (16), and SV
and SVC are the index sets of margin support vector (8) and non-margin support vector
(9) respectively.

Proof: Assuming the removing point (xt ,yt) belongs to the r-th class and t ∈ SV .
According to Lemma 1, when the LOO error procedure commits an error at the removing
point, there exists s∗m by the equation (16), m ∈ {1, · · · ,r− 1,r + 1, · · · ,k}, to hold the
following inequalities

1
αr

t
(

1
2

αT
t αtK(xt ,xt)+ ∑

i∈SV |t
αT

t αiK(xt ,xi))−
1
2

αr
t s∗Tm s∗m < 0. (31)

If t ∈ SVC, the removing point (xt ,yt) is a margin support vector, then the number of
error made by the LOO error procedure is |SVC|, where SVC is defined by (9) and | · | is
the number of elements in the set.

So we get the LOO error bound (30) for the Crammer-Singer multiclass SVM. �
It can be seen easily that we have got the LOO error bound by training the whole

training set only once which is valid for all kernel functions.

4 Numerical Experiments
In order to test the performance of the proposed LOO error bound for the Crammer-

Singer multiclass SVM, we use three benchmark datasets from the UCI repository[2]:
iris, wine and glass.

As a result of large scale of Crammer-Singer multiclass SVM, the computation of
the LOO error is extremely time consumed. So we pick out 40 and 80 points using the
stratified random method [3] to construct the new datasets in the first and the second group
of experiments respectively. Each new dataset is normalized. And RBF kernel is selected
K(x,x′) = exp(−γ||x− x′||2). So the parameters to be selected are C,γ , where they are
selected respectively from the following two candidate sets C = logspace(−3,3,10), γ =
logspace(−3,3,10), where logspace is a logarithmically spaced vector in MATLAB.

Each time we fix one parameter C or γ , and let the another parameter change according
to one of the above two candidate sets. We compare the values of LOO error bounds and
LOO errors in this manner to observe whether the trend of the LOO error bound consists
with the trend of LOO error itself. Figure 1 and Figure 2 show the performance of the
LOO error bound respectively for two groups of experiments. “LOO error" shows the
actual LOO error and “LOO error bound" shows the bound obtained from the Theorem 2.
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Figure 1. the comparison between LOO error and LOO error bound on the dataset
consists of 40 points
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Figure 2. the comparison between LOO error and LOO error bound on the dataset
consists of 80 points

As the above figures showed, the changing trend of the LOO error bounds is almost
coincident with that of the LOO errors. As a whole, the point corresponding to the min-
imum of the LOO error bound is close to those of LOO error. So minimizing the LOO
error bound to select parameters can obtain almost the same performance compared to
minimizing the LOO error. However the time consumed by them has a great difference.
Assume we have a k class sample set of l training points. It needs to solve a QP op-
timization problem with (l− 1)k variables l times for LOO error whereas a similar QP
optimization problem with lk variables only once for LOO error bound. So the time com-
putation cost of LOO error bound is so little relative to LOO error, approximatively its
1
l

. When the number of sample points increase, the execution time of LOO error in-
creases fast while the execution time of LOO error bound increases slowly. So for the
large sample data, the superior of our method is extreme prominent.

5 Conclusions
In this paper, we have proposed the LOO error bound for the Crammer-Singer mul-

ticlass SVM. The LOO error bound and the LOO error have almost the same changing
trends when the parameters change, so minimizing the LOO error bound to select pa-
rameters can achieve almost the same performance compared to minimizing the LOO
error, whereas the computation time required during the selection of parameters process
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is drastically reduced. We have tested our bound on three benchmark datasets, which have
produced promising results confirming our approach. Note that the computation time of
LOO error grows fast along with the increase of the number of the sample set. Thus, for
problems with large dataset, our strategy is very effective for performing good parameters
selection for the Crammer-Singer multiclass SVM with limited time.
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