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Abstract The constrained orienteering problem (COP) can be expressed as: Given an undirected
weighted graph G = (V,E) and a subset S ⊆ V . Each node has a score, each edge has a weight
indicating distance or time between the two adjacent nodes. The starting node and ending node are
specified. Given a fixed amount of weight denoting the total distance or total time, the goal is to
determine a walk from the starting node to the ending node through a subset of nodes including all
the nodes in S, in order to maximize the total score of the walk. This problem is a generalization
of the orienteering problem or a special case of the Steiner Tree problem. In this paper, we first
formulate the COP problem into an integer linear programming based on network flow theory and
solve it to obtain the exact optimal solution for examples of small size. Then we give a heuristic
algorithm for solving the large instances of the problem. Finally, we give computational results of
both exact and heuristic algorithms which demonstrate the efficient of the algorithm.
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1 Introduction
The orienteering problem (OP) is a well established problem in combinatorial opti-

mization which is introduced in [4]. In the orienteering problem, we are given an edge-
weighted graph G(V,E), where V = {v1,v2, · · · ,vn}, each node vi ∈ V has an associated
non-negative score wi, each edge ei j ∈ E has a weight di j representing the length or time
taken to travel from node vi to node v j. Given a starting node s ∈ V and an ending node
t ∈V , a length or time limit Dlim. The goal is to find a walk beginning at s and ending at
t of total length at most Dlim that maximizes the total score of distinct vertices visited by
the walk.

Given a subset S ∈V \{s, t}, the constrained orienteering problem (COP) is an orien-
teering problem with the additional constraint that each node of S ∈ V must be included
in the walk. For the COP, the subset S usually includes a few number of nodes. When
S = /0, the COP is OP.

Although the OP has many applications in the field of routing, many of these ap-
plications are actually suited for the COP. For instance, in [4], the authors describe an
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application of the OP to the delivery of home heating fuel. In this application, utility
managers would assign each customer a score based on their urgency of need for home
heating fuel and would select a subset of customers to serve based on need and geography
while adhering to total time (or distance) limitations. Urgency would take into account
each customers tank size as well as historical and seasonal rates of usage. Further, a com-
pany might consider a set of special customers, who must be served since their heat fuel
has been used up. By combining these factors, using the COP, the heating fuel company
could make a better decision about which customers to serve.

There are many other examples suit to be solved by the COP. Suppose a foreign profes-
sor come to China to take part into three meetings which will be held in Beijing, Chengdu,
and Shanghai respectively. He wants to visit some other cities of China during his staying
in China. But he has limited money to travel 5000 miles. He can obtain a score (satisfac-
tion degree) in each city he visited. The problem is which cities he should choose to visit
and which walk he should take along. In other words, the professor wants to find a walk
visiting some cities including Beijing, Chengdu and Shanghai such that the total score he
obtained is maximum. This problem is a COP problem.

In the past decades, researchers have proposed a large number of heuristics for the OP.
Tsiligrides [11] proposed a stochastic algorithm for the OP. Wang et al [7] applied artifi-
cial neural networks to the OP and obtained high-quality results. Chao et al [1] applied
deterministic annealing to the OP and also obtained high-quality results. Gendreau et al.
[10] applied tabu search to the OP and obtained near-optimal solutions to instances with
up to 300 nodes.

Although there are many algorithms for the OP, they can not be used for the COP
since their constraints are different. In this paper, the COP is formulated into an integer
linear programming model based on the network flow theory in section 2, then the optimal
solution is obtained by solving the integer linear programming. In section 3, a heuristic
algorithm for solving the COP is constructed. Section 4 gives the computational results
both on the exact and the heuristic algorithms. Our algorithms are the first approaches for
the COP, and high-qualified solutions can be obtained by these algorithms. Finally, the
conclusions are gived in section 5.

2 The Constrained Orienteering Problem
The constrained orienteering problem (COP) can be formulated as follows: Given an

undirected weighted graph G = (V,E) with node set V = {v1,v2, · · · ,vn} , edge set E and
a subset S ⊆ V . Each node vi has a weight wi ≥ 0 which can be interpreted as profit
obtained by visiting it. The starting node is v1 and the ending node is vn. Each edge ei j
has weight di j which can be interpreted as distance. The COP is to find a walk P in graph
G which satisfies the following conditions. (1) P is starting from node v1 and ending at
node vn; (2) S⊂V (P); (3) the total distance of P is no more than a given limit Dlim; (4)the
total score of nodes in walk P is maximal.

Using the network flow theory, suppose there is a flow of size n−1 entering into the
network from source node v1. Then it flows through one edge and enters into another
node. Whenever it flows into a node, a unit of flow is absorbed by the node, the other
units will flow out through another edge. Finally, when the flow enters into node vn, all
the units will be absorbed which means that node vn is the ending node where all the flows
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entering into it will be absorbed. The nodes and edges along the flow consists of the walk
from v1 to vn. The COP can be formulated into the following integer linear programming
model.

max
n

∑
i=1

n

∑
j=1

wixi j (1.1)

s.t.





∑n
j=2 x1 j = ∑n−1

i=1 xin = 1 (1.2)
∑n

i=2 xi1 = ∑n−1
j=1 xn j = 0 (1.3)

∑n−1
i=1 xik = ∑n

j=2 xk j ≤ 1,k = 2, · · · ,n−1 (1.4)
∑n−1

i=1 xik = ∑n
j=2 xk j = 1,k ∈ S (1.5)

∑n
i=1 ∑n

j=1 di jxi j ≤ Dlim (1.6)
xi j ≤ fi j ≤Mxi j,ei j ∈ E (1.7)
∑n

j=2 fk j = ∑n−1
i=1 fik−∑n−1

i=1 xik,k = 2, · · · ,n−1 (1.8)
∑n

j=1 f1 j = n−1 (1.9)
xi j ∈ {0,1}, fi j ≥ 0, i, j = 1,2, · · · ,n (1.10)

(1)

Where xi j is a binary variable, xi j = 1 indicates that edge ei j is selected in the walk,
while xi j = 0 indicates the edge ei j is not selected in the walk. fi j is the units of flow
passing through edge ei j. Dlim is the upper bound of the total distance in P. M is a large
positive number more than the total number of nodes in the graph.

The objective function maximizes the total score in walk P.
Constraint (1.2) means that there is one edge leaving node v1 in walk P, and one edge

entering into node vn in walk P. Constraint (1.3) indicates there is no edge entering into
node v1 or leaving node vn, which means that node v1 is the starting node and node vn is
the ending node of walk P. Constraint (1.4) means that for every node vk, if there is an
edge entering into it, there must be another edge leaving it. Constraint (1.5) means that
every node of subset S must be in the walk P. Constraint (1.6) means that the total length
of walk P is no more than Dlim. Constraint (1.7) indicates that if there is one or more
units of flow passing through edge ei j, then xi j must equal 1, that is, edge ei j is selected
in the walk. Constraint (1.8) indicates that every selected edge is in the connected walk.
Constraint (1.9) indicates that there are n− 1 units of flow entering into node v1, which
means that the nodes in walk P is no more than n. Constraint (1.10) indicates that xi j is a
binary variable while fi j is a nonnegative integer variable.

3 A Heuristic Algorithm for the COP
Since the OP is NP-hard, and the OP is a special case of the COP, so the COP is

NP-hard. For the small size of the COP problem (for example the number of network
nodes is no more than 30), we can directly solve the integer linear programming model
to obtain global optimal solutions. But for the large instances of the COP problem with
nodes more than 50, solving the integer linear problem is time consuming. So we must
construct some heuristic or approximate algorithms to solve the COP within reasonable
time.
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In the following of this section, we will construct a heuristic algorithm for solving the
COP.

Suppose v1 is the starting node and vn is the ending node. S = {v2,v3, · · · ,vk+1} are k
nodes that must be visited.

Heuristic Algorithm for the COP (HCOP):

• Input: A graph G = (V,E), V = {v1,v2, · · · ,vn}, score wi of each node vi, weight
di j of each edge ei j = (vi,v j) ∈ E. S = {v2,v3, · · · ,vk+1} ⊂V , P = /0, T =V . The
maximum distance Dlim, W = 0.

• Output: The optimal walk P starting from node v1 and ending at node vn. The total
score W of all nodes in the walk P.

• STEP-1: Solve the TSP problem in the induced graph G[S∪ {v1,vn}]. Denote
the optimal walk from v1 to vn including all nodes of S by P. Let T = T \V (P).
W = ∑vi∈P wi. L = ∑ei j∈E(P) di j.

• STEP-2: If L > Dlim, there is no feasible solution, Stop. Otherwise, go to STEP-3.
• STEP-3: If T = /0, go to STEP-6. Otherwise, let T T = T , FF = /0, Go to STEP-4.
• STEP-4: If T T = /0, Go to STEP-5. Otherwise, select a node vk ∈ T T , find the

proper site in P such that if vk is added in the walk by this site the new walk P(vk) =
P∪{vk} has the minimal length. Calculate the the length L(P(vk)) of walk P(vk)
and the increase length ∆L = L(P(vk))−L(P).

• If L(P(vk)) > Dlim, delete node vk from both T and T T , i.e. T = T \ {vk},
T T = T T \{vk}.

• If L(P(vk))≤ Dlim, then calculate the ratio Rvk =
wk
∆L of node vk. Delete node

vk from T T , and add node vk to FF . i.e. T T = T T \{vk}, FF = FF ∪{vk}. Go to
STEP-4.

• STEP-5: If FF = /0, Go to STEP-6. Otherwise, find the node vr in FF with the
maximum ratio, i.e. Rvr = maxvk∈FF Rvk .

• Add node vr to walk P in the proper site to obtain the new walk P(vr)=P∪{vr}.
Let P = P(vr), L = L(P(vr)), W =W +w(vr), T = T \{vr}. Go to STEP -3.

• STEP-6: Output P, L, W .

By this way, we can obtain a local optimal walk starting from node v1 and ending at
node vn including all nodes in S, which has sub-maximum node score sum.

Computational Complexity of the Algorithm HCOP
Theorem 1 Algorithm HCOP requires O(n3) time to solve the COP problem for G =

(V,E), |V |= n, |S|= k.
Proof: The time complexity of algorithm HCOP is determined by two parts: the first

is solving the TSP problem in induced graph G[S∪{v1,vn}], which take time k!. Since
k is very small, so we can find the global optimal solution in STEP-1 in no more than
k! time. For the large number of k, we can use heuristic algorithm for solving the TSP
problem in graph G[S] in no more than O(k3) times. The second part is the loops adding
new nodes to the partial path in STEP-4 and STEP-5. For each time a new node is added,
it takes time no more than O(n2), since there are no more than n− k nodes needing to be
added, the total times to finish STEP-4 and STEP-5 is no more than O(n3). So the total
time of algorithm HCOP is no more than O(n3).
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4 Computational results
We use the example of 27 cities in China [2] [8]. Fig 1 illustrates the sites of 27 cities

in the Chinese map. Table 1 includes the longitudes, latitudes, and scores for each of these
cities. Each city has a score which equals the sum of the four scores of [2]. These scores
are scaled from 1 to 40. The higher the score, the more attractive the city. The distance
matrix is obtained from paper [2].

 

Figure 1: The graph of 27 cities’ site in the Chinese map.

Table 1 Locations and Scores of 27 cities in China
City Lon. Lat. Score City Lon. Lat. Score

1 Beijing 116.40 39.91 35 15 Wuhan 114.30 30.55 26
2 Tianjin 117.18 39.16 27 16 Changsha 113.00 28.20 23
3 Jinan 117.00 36.67 25 17 Guangzhou 113.15 23.15 27
4 Qingdao 120.33 36.06 23 18 Haikou 110.35 20.02 22
5 Shijiazhuang 114.50 38.05 19 19 Guilin 110.29 25.28 22
6 Taiyuan 112.58 37.87 21 20 Xi’an 108.92 34.28 28
7 Huhehaote 111.70 40.87 22 21 Yinchuan 106.27 38.48 22
8 Zhengzhou 113.60 34.75 21 22 Lanzhou 103.80 36.03 24
9 Huangshan 118.29 29.73 16 23 Chengdu 104.07 30.66 24

10 Nanjing 118.75 32.04 29 24 Guiyang 106.70 26.59 22
11 Shanghai 121.45 31.22 27 25 Kunming 102.80 25.05 29
12 Hangzhou 120.15 30.25 30 26 Shenyang 123.40 41.80 24
13 Nanchang 115.88 28.35 23 27 Dalian 121.60 38.92 25
14 Fuzhou 119.30 26.10 23

In this section, we select Beijing as both the starting and ending nodes of the walk. we
choose different distance limit and different node set that must be included in the walk.
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The results obtained by both the exact algorithm and the heuristic algorithm are listed in
Table 2 and Table 3. The exact algorithm of solving integer linear programming model
is coded by Lingo software, while the heuristic algorithm is coded by MATLAB. Both
codes were run on a Windows XP, Pentium-IV with 2.0 GHz speed and 2.0 G of memory.

Table 2 Results on 27 cities of China with given node set S = {v4,v20,v23}
Dlim S Distance Score Walk
4000 {4,20,23} 3820.8 223 1-5-6-23-20-8-3-4-2-1
5000 {4,20,23} 4933.5 353 1-5-6-20-23-16-15-9-12-11-10-4-3-2-1
6000 {4,20,23} 5996.8 441 1-3-4-10-11-12-9-15-13-16-19-24-23

-20-8-6-5-2-1
7000 {4,20,23} 6946.7 497 1-2-5-6-8-20-23-25-24-19-17-16-15-13-

-13-9-12-11-10-4-3-1
8000 {4,20,23} 7956.9 547 1-2-3-27-4-10-11-12-9-13-15-16-17-19-

-24-25-23-22-21-20-6-5-1
9000 {4,20,23} 8927.3 593 1-2-3-5-6-8-20-22-23-25-24-19-17-16-

-15-13-14-9-12-11-10-4-27-26-1
10000 {4,20,23} 9990.8 637 1-2-5-6-7-21-22-23-25-24-19-17-14-12-

-11-10-9-13-16-15-20-8-3-4-27-26-1
11000 {4,20,23} 10891.4 659 1-7-6-5-3-8-20-21-22-23-25-24-19-17-

-18-14-13-16-15-9-11-12-10-4-27-26-2-1

Table 3 Results on 27 cities of China with given node set S = {v23,v26}
Dlim S Distance Score Walk
5000 {23,26} 4996.2 296 1-5-6-20-23-16-15-9-12-11-10-4-3-2-1
6000 {23,26} 5967.3 418 1-26-27-4-10-11-12-9-13-16-19-24-

-23-20-6-5-2-1
7000 {23,26} 6883.7 497 1-2-26-27-4-10-11-12-9-13-15-16-19-

-24-23-20-8-6-5-3-1
8000 {23,26} 7992.4 546 1-6-5-3-8-20-23-25-24-19-17-16-15-13-

-9-12-11-10-4-27-26-2-1
9000 {23,26} 8927.3 593 1-2-3-5-6-8-20-22-23-25-24-19-17-16-

-15-13-14-9-12-11-10-4-27-26-1
10000 {23,26} 9863.5 637 1-26-27-4-10-11-12-9-14-13-15-16-17-19-

-24-25-23-22-21-20-8-6-7-5-3-2-1
11000 {23,26} 10966.5 659 1-2-3-5-6-8-20-21-22-23-25-24-19-18-17-

-14-13-16-15-9-11-12-10-4-27-26-7-1

From Table 2 and Table 3, we can see that both algorithms can find the reasonable
results under different parameters.

5 Conclusion
In this paper, we proposed the constrained orienteering problem (COP), and formu-

lated it into an integer linear programming model. By solving the integer linear program-
ming, we can obtain the global optimal solution of the COP. We also proposed a heuristic
algorithm for the COP. Our heuristic is based on the idea of maximum marginal score
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increase. We applied our exact algorithm to 27 cities of China revised from the literature.
The results showed that our algorithm is efficient and performs well on the test problems.

Although we have used our algorithms on a 27-node examples and obtained the opti-
mal solutions. We have not test the algorithms on large size of examples with more than
60 nodes. In the future, we will explore some more algorithms for the large size of COP
examples.

Our integer linear programming model for the COP can be revised to solve many
other problems, such as the OP problem, the TSP problem and some VRP problems. To
solve the OP problem, we only need to delete constraint (1.5) of model 1. To solve the
TSP problem, we only need to change the objective function and revise some restraints.
In the other words, the TSP problem can be formulated into the following integer linear
programming model.

min
n

∑
i=1

n

∑
j=1

di jxi j (2.1)

s.t.





∑n
j=2 x1 j = ∑n−1

i=1 xin = 1 (2.2)
∑n

i=2 xi1 = ∑n−1
j=1 xn j = 0 (2.3)

∑n−1
i=1 xik = ∑n

j=2 xk j = 1,k = 2, · · · ,n−1 (2.4)
xi j ≤ fi j ≤Mxi j,ei j ∈ E (2.5)
∑n

j=2 fk j = ∑n−1
i=1 fik−∑n−1

i=1 xik,k = 2, · · · ,n−1 (2.6)
∑n

j=1 f1 j = n−1 (2.7)
xi j ∈ {0,1}, fi j ≥ 0, i, j = 1,2, · · · ,n (2.8)

(2)

The objective function minimizes the total length in the tour. Constraint (2.4) indicates
that every node must be visited one time. The other constraints and all the variables have
the same means as those in model (1). Solving this model by Lingo software, we can
obtain the optimal tour of 27 cities in China, which is:1-7-6-5-3-8-20-21-22-23-25-24-
19-18-17-16-13-14-9-12-11-10-4-27-26-2-1, the total length is 10428.3, the running time
is 140 seconds.

To solve the VRP problem, we only need to revise constraint (2.2) in model (2). For
example, if there are R vehicles that can be used. We can formulate the VRP into the
following integer linear programming model.

min
n

∑
i=1

n

∑
j=1

di jxi j (3.1)

s.t.





∑n
j=2 x1 j = ∑n−1

i=1 xin = R (3.2)
∑n

i=2 xi1 = ∑n−1
j=1 xn j = 0 (3.3)

∑n−1
i=1 xik = ∑n

j=2 xk j = 1,k = 2, · · · ,n−1 (3.4)
xi j ≤ fi j ≤Mxi j,ei j ∈ E (3.5)
∑n

j=2 fk j = ∑n−1
i=1 fik−∑n−1

i=1 xik,k = 2, · · · ,n−1 (3.6)
∑n

j=1 f1 j = n−1 (3.7)
xi j ∈ {0,1}, fi j ≥ 0, i, j = 1,2, · · · ,n (3.8)

(3)
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Let R = 2, we solve model (3) by Lingo software, obtain the two optimal route for 27
cities in China, which are: 1-2-1 and 1-26-27-4-10-11-12-9-14-13-15-16-17-18-19-24-
25-23-22-21-20-8-3-5-6-7-1, the total length is 10557.9, the running time is 160 seconds.

Although models (1)(2)(3) are integer linear programming models. Since the number
of 0-1 variables is not too many, so we can solve these models by Lingo software or
other softwares. The running time is not too long for the small- or middle-size examples.
But for examples of large size, efficient heuristic algorithms are still the best methods for
finding the local optimal solutions. In the future, we will investigate different heuristic
algorithms for solving the COP and related problems.
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