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Abstract In this paper, we summarize several different definitions of cone quasiconvex set-valued
mappings proposed in recent papers and study the relationships among them. The conclusions show
that some of these definitions of cone quasiconvex set-valued mappings are equal, however some
are different. Furthermore, a criteria for cone quasiconvexity of set-valued mappings is obtained
under lower semicontinuity.
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1 Introduction
The research on convexity and generalized convexity is one of the most important

aspects of mathematical programming, and the subjects discussed constitute one of the
current trends in this area of problems. Numerous generalizations of convex functions
have been derived which have proved to be useful for extending optimality conditions
and connectedness of solution sets to larger classes of optimization problems. Quasi-
convexity is a kind of important generalized convexity. Recently, set-valued mappings
optimization problems have attracted a great of attention. In [1-5], various cone quasicon-
vexity of set-valued mappings have been proposed to express these optimality conditions
and connectedness of solution sets, which are extensions of quasiconvexity of real-valued
functions in Rn [6].

In the present paper, we investigate relationships among these definitions of cone
quasiconvex set-valued mappings and give a sufficient condition for cone quasiconvexity
of set-valued mappings.

Throughout this paper, let X be a topological vector space, Y be an ordered topological
vector space partially ordered by a pointed closed convex ∧ ⊂ Y , A ⊂ X be a nonempty
convex set and F : A→ 2Y be a set-valued mappings.

2 Relationships among different cone quasi-convex set-
valued mappings

In this section, we investigate the relationships among different cone quasiconvex set-
valued mappings introduced in [1-5].
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Definition 2.1.([1]) F is said to be S-∧-quasiconvex, if any x1,x2 ∈ A, y ∈ Y, F(x1)∩
(y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0 imply F(λ x1 +(1− λ )x2)∩ (y−∧) 6= /0 for any
λ ∈ [0,1 ].
Theorem 2.1. F is S-∧-quasiconvex if and only if F−1(y−∧) = {x ∈ A|F(x)∩ (y−∧) 6=
/0} is convex for any y ∈ Y.
Proof. Suppose that F is S-∧-quasiconvex. Let y ∈ Y,x1,x2 ∈ F−1(y−∧). Then,

x1,x2 ∈ A,F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0.

Since A is convex set and F is S-∧-quasiconvex, we have

λ x1 +(1−λ )x2 ∈ A and F(λ x1 +(1−λ )x2)∩ (y−∧) 6= /0 for any λ ∈ [0,1 ].

That is, λ x1 +(1−λ )x2 ∈ F−1(y−∧) for any λ ∈ [0,1 ]. Hence, F−1(y−∧) is convex.
Conversely, assume that F−1(y−∧) is convex for any y ∈ Y . Let x1,x2 ∈ A, y ∈

Y, F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0. Then,

x1,x2 ∈ F−1(y−∧).

Thus, for any λ ∈ [0,1 ], we get

λ x1 +(1−λ )x2 ∈ F−1(y−∧),

and it follows that

F(λ x1 +(1−λ )x2)∩ (y−∧) 6= /0, for any λ ∈ [0,1 ].

This means, by Definition 2.1, F is S-∧-quasiconvex.
Definition 2.2.([3]) F is J-∧-quasiconvex , if for any y ∈ Y the level set LF(y) = {x ∈
A|y ∈ F(x)+∧} is convex.

By Theorem 2.1, we obtain the following result
Theorem 2.2. F is S-∧-quasiconvex if and only if F is J-∧-quasiconvex.
Definition 2.3.([4]) F is said to be L-∧-quasiconvex, if any x1,x2 ∈ A, F(x1)⊂ F(x2)+∧
imply F(x1)⊂ F(λ x1 +(1−λ )x2)+∧ for any λ ∈ [0,1 ].
Theorem 2.3. If F is S-∧-quasiconvex, then F is L-∧-quasiconvex.
Proof. Let x1,x2 ∈ A,F(x1)⊂ F(x2)+∧. Then, for any y ∈ F(x1),we obtain

F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0.

That is,
x1,x2 ∈ F−1(y−∧).

Since, from Theorem 2.1, F−1(y−∧) is convex, then for any λ ∈ [0,1 ],

λ x1 +(1−λ )x2 ∈ F−1(y−∧),

and it follows that

F(λ x1 +(1−λ )x2)∩ (y−∧) 6= /0, for any λ ∈ [0,1 ].

84 The 9th International Symposium on Operations Research and Its Applications



Thus,
y ∈ F(λ x1 +(1−λ )x2)+∧, for any λ ∈ [0,1 ].

Since y is an arbitrary points belonging to F(x1), we have

F(x1)⊂ F(λ x1 +(1−λ )x2)+∧,

which shows, by Definition 2.3, F is L-∧-quasiconvex.
Remark 2.1. The converse of Theorem 2.3 is not true. See example 2.1.

Example 2.1. Let F : R→ 2R
2

be defined by as

F(x) =





{(x,3)T} x≤ 0.
{(x,3− x)T} x≥ 0 and x 6= 1
{(4,4)T} x = 1.

and ∧ = R2
+. It is easy to verify that F is is L-∧-quasiconvex, but F is not S-∧-

quasiconvex.
Definition 2.4. Let M ⊂ Y and N ⊂ M. N is said to be externally stable if, for each
y ∈M \N, there exists some ŷ ∈ N such that y ∈ ŷ+∧.
Definition 2.5. Let y1,y2, . . . ,ym ∈ Y (m ≥ 1). A point ỹ ∈ ⋂m

i=1(yi +∧) is said to be
a ∧−bound point of vector set {y1,y2, . . . ,ym}, if there exists no y ∈ ⋂m

i=1(yi +∧) such
that ỹ−y ∈ ∧\{0}. The set of ∧−bound point of vector set {y1,y2, . . . ,ym} is denoted by
∧−bou{y1,y2, . . . ,ym}.
Definition 2.6.([5]) F is said to be C-∧−quasiconvex , if for any x1,x2 ∈A,y1 ∈F(x1),y2 ∈
F(x2) and λ ∈ [0,1], we have

∧−bou{y1,y2} ⊂ F(λx1 +(1−λ )x2)+∧.

Theorem 2.4. if F is C-∧−quasiconvex and ∧−bou{y1,y2} is externally stable for any
x1,x2 ∈ A,y1 ∈ F(x1),y2 ∈ F(x2), then F is S-∧−quasiconvex.
Proof. Let y ∈ Y,x1,x2 ∈ F−1(y−∧). Then, x1,x2 ∈ A and there exist y1 ∈ F(x1),y2 ∈
F(x2) such that

y ∈ y1 +∧,y ∈ y2 +∧.
That is,

y ∈ (y1 +∧)∩ (y2 +∧).

Case(i): y ∈ ∧−bou{y1,y2}. since F is C-∧−quasiconvex ,we get

y ∈ F(λx1 +(1−λ )x2)+∧, for any λ ∈ [0,1 ].

Then, λ x1 +(1−λ )x2 ∈ F−1(y−∧) for any λ ∈ [0,1 ]. Hence, F−1(y−∧) is convex.
Case(ii): y /∈ ∧−bou{y1,y2}. Since ∧−bou{y1,y2} is externally stable, there exists

ŷ ∈ ∧−bou{y1,y2} such that y− ŷ ∈ ∧\{0}. That is, y ∈ ŷ+∧.
Since F is C-∧−quasiconvex, we have

ŷ ∈ F(λx1 +(1−λ )x2)+∧, for any λ ∈ [0,1 ].
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Therefore,

y∈ ŷ+∧⊂F(λx1+(1−λ )x2)+∧+∧=F(λx1+(1−λ )x2)+∧ , for any λ ∈ [0,1 ].

That is, λ x1 +(1−λ )x2 ∈ F−1(y−∧) for any λ ∈ [0,1 ]. Hence, F−1(y−∧) is convex.
From Theorem 2.1, F is S-∧−quasiconvex.

Theorem 2.5. if F is S-∧−quasiconvex , then F is C-∧−quasiconvex.
Proof. Take any x1,x2 ∈ A,y1 ∈ F(x1),y2 ∈ F(x2),y ∈ ∧−bou{y1,y2}. Then, we have

y ∈ (y1 +∧)∩ (y2 +∧),

and it follows that
y ∈ F(x1)+∧,y ∈ F(x2)+∧.

That is,
x1,x2 ∈ F−1(y−∧).

Since F is S-∧−quasiconvex, then for any λ ∈ [0,1 ],

λ x1 +(1−λ )x2 ∈ F−1(y−∧),

and it follows that

F(λ x1 +(1−λ )x2)∩ (y−∧) 6= /0, for any λ ∈ [0,1 ].

That is,
y ∈ F(λ x1 +(1−λ )x2)+∧, for any λ ∈ [0,1 ].

Therefore,

∧−bou{y1,y2} ⊂ F(λx1 +(1−λ )x2)+∧, for any λ ∈ [0,1 ].

This means, by Definition 2.6, F is C-∧−quasiconvex.

3 Criteria for cone quasiconvexity of set-valued mappings
Definition 3.1.([7]) F is called to be lower semicontinuous (l.s.c in brief) at x̂ ∈ A, if for
any open set V satisfying F(x̂)∩V 6= /0, there exists a neighborhood U of x̂ such that
F(x)∩V 6= /0, ∀x ∈U ∩A.

F is said to be l.s.c on A, if F is l.s.c at every point x ∈ A.
Lemma 3.1. If there exists α ∈ (0,1), such that F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−
∧) 6= /0 imply F(α x1 +(1−α )x2)∩ (y−∧) 6= /0, for any x1,x2 ∈ A,y ∈ Y, then the set
K = {λ ∈ [0,1]|F(x1)∩(y−∧) 6= /0 and F(x2)∩(y−∧) 6= /0 imply F(λ x1+(1−λ )x2)∩
(y−∧) 6= /0, for any x1,x2 ∈ A,y ∈ Y} is dense in [0,1 ].
Proof. By the assumption, we get α ∈ K, then K 6= /0.

We proceed by contradiction. Suppose that there exist λ0 ∈ (0,1)\K and a neighbor-
hood U of λ0 such that U ∩K = /0. Let λ1 = inf{λ ∈ A|λ ≥ λ0} and λ2 = sup{λ ∈ A|λ ≤
λ0}, then 0≤ λ2 ≤ λ1 ≤ 1.
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Since α,1−α ∈ (0,1), there exist u1,u2 ∈ K,u1 ≥ λ1,u2 ≤ λ2 such that

(u1−u2)max{α,1−α} ≤ λ1−λ2.

Define λ̄ = αu1 +(1−α)u2, we can claim that λ̄ ∈ K. In fact, take x1,x2 ∈ A,y ∈ Y
satisfying F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0. Since u1,u2 ∈ K, there hold that

F(u1x1 +(1−u1)x2)∩ (y−∧) 6= /0 and F(u2x1 +(1−u2)x2)∩ (y−∧) 6= /0.

By virtue of the definition of λ̄ , we have

λ̄ x1 +(1− λ̄ )x2 = α(u1x1 +(1−u1)x2)+(1−α)(u2x1 +(1−u2)x2).

Since α ∈ K, we obtain

F(λ̄ x1 +(1− λ̄ )x2)∩ (y−∧) 6= /0,

which implies λ̄ ∈ K.

Case(i): λ̄ ≥ λ0. Since λ̄ −u2 = α(u1−u2)< λ1−λ2,we have λ̄ < λ1 contradicting
the definition of λ1.

Case(ii): If λ̄ ≤ λ0. Since u1− λ̄ = (1−α)(u1− u2) < λ1−λ2, we obtain λ̄ > λ2
contradicting the definition of λ2.

Theorem 3.2. If F is l.s.c on A and there exists α ∈ (0,1), such that F(x1)∩ (y−∧) 6= /0
and F(x2)∩(y−∧) 6= /0 imply F(α x1+(1−α )x2)∩(y−∧) 6= /0, for any x1,x2 ∈A,y∈Y,
then F is S-∧−quasiconvex.
Proof. Suppose that F is not S-∧−quasiconvex. Then there exist x̄1, x̄2 ∈ A, ȳ ∈ Y and
λ̄ ∈ (0,1) such that

F(x̄1)∩ (ȳ−∧) 6= /0,F(x̄2)∩ (ȳ−∧) 6= /0 and F(λ̄ x̄1 +(1− λ̄ )x̄2)∩ (ȳ−∧) = /0.

Let z = λ̄ x̄1 +(1− λ̄ )x̄2,

K = {λ ∈ [0,1]|F(x1)∩ (y−∧) 6= /0 and F(x2)∩ (y−∧) 6= /0 imply F(λ x1 +(1−
λ )x2)∩ (y−∧) 6= /0, for any x1,x2 ∈ A,y ∈ Y}.
From Lemma 3.1, there exists a sequence {λn} ⊂ K such that λn ≤ λ̄ and λn→ λ̄ .

Denote x̄2
n = λ̄−λn

1−λn
x̄1 +(1− λ̄−λn

1−λn
)x̄2. Thus, x̄2

n → x̄2 and λn x̄1 +(1−λn )x̄2
n = z.

Since A is a convex set and 0 < λ̄−λn
1−λn

< 1, it follows that x̄2
n ∈ A.

Since F is l.s.c on A, F(x̄2)∩ (ȳ−∧) 6= /0 and x̄2
n→ x̄2, there exists an N such that

F(x̄2
n)∩ (ȳ−∧) 6= /0, for any n > N.

Therefore, from λn ∈ K, we have

F(λn x̄1 +(1−λn )x̄2
n)∩ (ȳ−∧) 6= /0.

That is,
F(z) = F(λ̄ x̄1 +(1− λ̄ )x̄2)∩ (ȳ−∧) 6= /0.

which contradicts F(λ̄ x̄1 +(1− λ̄ )x̄2)∩ (ȳ−∧) = /0.
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