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Abstract Consider a general parametric optimization problem P(€) of the form min f(x, €), s.t.
X

x € R(€). Convexity and generalized convexity properties of the optimal value function f* and the
solution set map S* form an important part of the theoretical basis for sensitivity, stability, and para-
metric analysis in mathematical optimization. Fiacco and Kyparisis [1] systematically discussed
the convexity and concavity of f* for the above parametric program P(€) and its several special
forms. In this paper, we extend these main results in [1] to the E-convexity of f* by introducing
E-convexity of set-valued maps.
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1 Introduction

Let Z" denote the n—dimensional Euclidean space. We consider a general para-
metric optimization problem of the from

Ple) { min f(x,€)

s.t. x €R(¢g),

where f: %" x %#* — %' and R is a set-valued map from % to %", as well as several spe-
cializations of this problem. The optimal value function f* of problem P(¢g) (sometimes
called the perturbation function or the marginal function)is defined as

P { inf{f(x,e)lx € R(e)}, ifR(e)#0,
oo, ifR(e)=0.
and the solution set-valued mappings S* is defined by
§7(e) ={x e R(e)|f(x.€) = /" (&)}
We also consider the following several special programs of P(€):

min f(x, €)

xes
Pi(e)q st. gi(x,€)<0,i=1,2,---.m,
hj(x,€)=0,j=1,2,---,p,
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where S C #",g;: B x B* — R',i=1,2,--- Jmhj: R xR~ R, j=1,2,---,p,
i.e., with R defined by

R(e) ={x € S|gi(x,e) <0,i=1,2,---,m, hj(x,e)=0,j=1,2,--- ,p}.

min f(x, €)
XeS

P(€)S st gilx) <&, i=1.2,--,m,
hj(x) = €ntjyj=1,2,--,p,

where S C %", gi: B" x B* — #'i=1,2,- ;mhj: B" x K — R, j=1,2,--,p,
i.e., with R defined by

R(e)={xeS|gi(x) <&,i=1,2,---,m, hj(x) =&uyj,j=1,2,---,p}.

Convexity, concavity and other fundamental properties of the optimal value function
f* and the solution set-valued map S*, such as continuity, differentiability, and so forth,
form a theoretical basis for sensitivity, stability, and parametric analysis in nonlinear opti-
mization. From the mid-1970s to the mid-1980s, the study of this area has been obtained
intensively. Many papers had tired to unify these theories and methodologies, for instance
[2-4]. Until 1986, Fiacco and Kyparisis[1] have systematically discussed the convexity
and concavity of f* for the above parametric program P(€) and its several special forms.
Similarly, generalized convexity properties of the optimal value function f* and the solu-
tion set map S*, also play a role of theoretical basis for sensitivity, stability and paramet-
ric analysis in nonlinear programming. Zhang[5] discussed preinvexity and preincavity
properites of f*.

Recently, Youness [6] introduced a class of sets and a class of functions called E-
convex sets and E-convex functions by relaxing the definitions of convex sets and convex
functions, which has some important applications in various branches of mathematical
sciences[7-9].

Motivated both by earlier research works and by the importance of the concepts of
convexity and generalized convexity, we introduce the concepts of E-convex set-valued
map and essentially E-convex set-valued map, and then develop some basic properties
of E-convex and essentially E-convex set-valued maps. Based on theses new concepts,
E-convexity properties of the optimal value function f* for the parametric optimization
problem P(¢€) and its several special forms are considered.

2 E-convexity of set-valued maps

In this section, we introduce two concepts of generalized convexity of set-valued
maps. Troughtout this section, M is a nonempty subset in Z*, and R is a set-valued
map from M to Z".

Definition 2.1.([6]) A set M is said to be E-convex if there is a map E : %X — %*
such that

(1-A)E(x)+AE(y) e M,

for each x,y € M and 4 € [0, 1].
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Lemma 2.1.([6]) If a set M is E-convex, then E(M) C M.

It is known from Lemma 2.1 that E(M) C M. Hence, for any set-valued map R, we
have the following observations:

Observation(a) The set-valued map RoE : M — 27" defined by
(RoE)(x) =R(E(x)) forallx e M

is well defined.
Observation(b) The Restriction R : E(M) — 27" of R : M — 27" to E(M) defined by

R(%) = R(X) forall ¥ € E(M)

is well defined.
Definition 2.2.([1]) Let M be a convex set.
(1) The set-valued map R is called convex on M if, for any €;,& € M and A € [0, 1],

AR(e)) + (1 — M)R(&) C R(Aey + (1 — A)er).

(2) The set-valued map R is called essentially convex on M if, for any €1,& € M, &, #
gand A €10,1],

AR(e1) + (1 — M)R(&2) C R(Aer + (1 —A)er).

Based on the concept of convex set-valued maps and essentially convex set-valued
maps, we introduce the concepts of E-convex set-valued maps and essentially E-convex
set-valued maps.

Definition 2.3. (1) The set-valued map R is called E-convex on M if there is a map
E : %% — 27 such that M is an E-convex set and

A(ROE)(e1) +(1—A)(RoE)(e2) C RAE(er) + (1 - M)E(&)),

for any €1,&, € M and A € [0, 1].

(2) The set-valued map R is called essentially E-convex on M if there is a map E :
F* — F* such that M is an E-convex set and

A(RoE)(e1)+(1—A)(RoE)(&2) C R(AE(e1) + (1 — A)E(&2)),

for any €,&8 € M,E(g)) # E(&) and A € [0,1].

Remark 2.1. If R is convex (resp. essentially convex) on M, then R is E-convex (resp.
essentially E-convex) on M.

Remark 2.2. If R is E-convex on M, then it is essentially E-convex on M. However,
the converse is not true. See example 2.1.

Remark 2.3. If R is E-convex on M, then it is convex-valued with respect to £ on M,
i.e., (RoE)(€) at each € € M is a convex set. However, An essentially convex set-valued

map may not be convex-valued with respect to E at the boundary points of M, as shown
below.
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Example 2.1. Let E : %° — %” be an identify map, R : %> — R' defined by

[0,1], ife? +e2 <1,
R(er, &)=< {0}u{1}, ife? +e2 =1,
0, ifef +€5 > 1.

and
M={(e1,&)|e} +&F < 1}.

It is easy to check that R is essentially E-convex on M, but (Ro E)(€], &) is not convex if
e+e =1

From now on, let E be a map from %Z* to %* and M be a nonempty E-convex set.

Proposition 2.1. Let R be E-convex (resp. essentially E-convex) on M. Then the
restriction, say R : C — 27", of R to any nonempty convex subset C of E(M) is convex
(resp. essentially convex) on C.

Proof. Let C C E(M) be convex, and let €, & € C (€ and & may not be distinct).
Then there exist €1,& € M such that § = E(g;) and & = E(&;). Since A€+ (1—-1)& €
C, it follows from the E-convexity of R that

AR(E)+(1-DR(E) =

AN

for all A € [0,1]. Hence, R is convex on C.

Corollary 2.1. Let R be E-convex (resp. essentially E-convex) on M. If E(M) C M is
a convex set, then the restriction R : E(M) — 27" of R to E (M) is convex (resp. essentially
convex) on E(M).

Proposition 2.2. Let E(M) C M be a convex set . If the restriction R : E(M) — 27"
of R to E(M) is convex (resp. essentially convex) on E(M), then R is E-convex (resp.
essentially E-convex) on M.

Proof. Let €1,& € M. Then E(g;),E(&) € E(M), and by the convexity of E(M), we
can obtain AE (&) + (1 —A4)(&) € E(M) for all 2 € [0,1]. Since R is convex on E(M),
we have

A(RoE)(e1)+(1-A)(RoE)(&2) = AR(E(e1))+(1-2)R(E(&2))
= AR(E(e1))+ (1 - A)R(E(&2))
C R(AE(g)+(1—1)E(&))
= R(AE(&1)+(1-21)E(&)),

which shows R is E-convex on M.

Corollary 2.2. Suppose that E(M) be convex . Then R is E-convex (resp. essentially
E-convex) on M if and only if its restriction R : E(M) — 2#" is convex (resp. essentially
convex) on E(M).

Let the map I x E : %" x %#* — %" x %* be

(IXE)(x,e) = (x,E(€)), for any(x,€) € Z" x Z*.
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Denote
G(R) ={(x,€)|x € R(g),e € M}.

It is easy to show that G(R) is I x E—convex, if and only if
(Axi +(1=2A)x2,AE(&1) + (1 —A)E(&2)) € G(R)

for each (x1,€1),(x2,&) € G(R) and A € [0,1].
Proposition 2.3. Suppose R is E-convex on M. If R(g) C (RoE)(¢) for each € € M,
then G(R) is I x E—convex.

Proof. Let (xl,&‘l), ()Cz,&‘z) S G(R) and A € [0, 1]. Then, x; € R(£1)7X2 S SR(Sz). By
the assumption that R(&) C (Ro E) (&), we obtain

x1 € (RoE)(&1), x2 € (RoE)(&). (2.1)
Since R is E-convex on M and (2.1), we get
Axi+(1—=A)xx e R(AE(g))+ (1 —L)E(&r)), (2.2)

which means that (Ax; + (1 —A)x2,AE(€) + (1 —A)E(&)) € G(R). Therefore, G(R) is
I x E—convex.

Proposition 2.4. Suppose G(R) is I x E—convex. If (RoE)(€) C R(g) for each
€ € M, then R is E-convex on M.

Proof. Let €,& € M and A € [0,1]. Take arbitrary points x; € (RoE)(€&1),x2 €
(RoE)(&). Then, it follows from (RoE)(g) C R(¢) foreach e e M

X1 GR(S]), B GR(82). (2.3)

That is,
(xl,el),(xg,ez) S G(R). (2.4)

Since G(R) is I x E—convex and (2.4), we get
Axi+(1=2A)x2,AE(€1)+ (1 —A)E(&2)) € G(R). (2.5)

That is,
Axy —‘r(l —A)xp € R(lE(Sl)—‘r(l —ﬂ,)E(£2)),

which shows that R is E-convex on M.

3 E-convexity of the optimal value function

In this section, we give the main results.

Definition 3.1.([6]) A function g : ¥ — %' is said to be E-convex on a set M C Z*
if there is a map E : %% — %* such that M is an E-convex set and

8(AE(&1) + (1 -2)E(&2)) < Ag(E(e1)) + (1 - A)g(E(&2)),

for each €1,&, € M and A € [0,1].
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It is easy to show that f : %" x %#* — %" is (I x E)—convex on %" x M, if and only
if

f(),xl +(1 _A)XZ,A,E(Sl) +(1 —A)E(Sz)) < lf(xl,E(Sl)) + (1 —A)f(XQ,E(Ez))

for each (x1,€1),(x2,&) € Z" x M and A € [0,1].

Theorem 3.1. Consider the general parametric optimization problem P(g). if f is
(I x E)—convex on the set {(x,€)|x € R(E(€)),€ € M}, R is essentially E-convex on M,
and M is E-convex, then f* is E-convex on M.

Proof. Let €1, € M,&; # &, and A € [0,1]. Then, by the (I x E)—convexity of f
and essential E-convexity of R, we obtain

frAE(e) + (1 -A)E(&2))

= erasia o ngey P AEE) + (1~ DEE)

: xlE(ROE)(EIT)I}szE(ROE)(eZ)f(lxl+(1_ )XZ’AE( 1)+ (1-A)E(e))
= xlE(Rol?)(sll)l?)fze(RoE)(gz)Mf(xl’E(g 1)) +(1=2)f(x,E(€))]

= A ey TR EE) (1) ze&?ﬁ ey P2 E(E2)

= Af*(E(&1))+(1—=2A)f*(E(e2)),

ie., f*is E-convex on M.

Definition 3.2.([10]) A function g : %% — %' is said to be E-quasiconvex on a set
M C Z* if there is a map E : Z* — %" such that M is an E-convex set and

8(AE(e1)+ (1 - A)E(&)) < max{g(E(e1)),8(E(&2))},

for each 1,6, € M and A € [0,1].

The functions g is said to E-quasiconcave, if —g is E-quasiconvex; g is said to E-
quasimonotonic, if g both is E-quasiconvex and E-quasiconcave.

Theorem 3.2. Consider the parametric problem P; (€). if g; are (I x E)—quasiconvex
onSxM,hjare (I x E)—quasimonotonic on S x M, S is convex and M is E-convex, then
R, given by

R(e) = {x € S|gi(x,€) <0,i=1,2,--- ,m, hj(x,e) =0,j=1,2,--- ,p},

is E-convex on M.

Proof. Let €1,& € M and take arbitrary points x; € (RoE)(€]),x2 € (RoE)(&).
Then, x1,x; € S,

gi(th(Sl)) < 07gi(x23(E82)) < Oal: 1327"' ,m (31)

and
hj(xlaE( )) Oh ()C2,( (82)>:O7j:]a2a"'7p' (32)

Since § is convex and M is E-convex, we have

Axi+(1—=A)xx € Sand AE(g))+ (1 —A)E(&2) e M forany A € [0, 1]. (3.3)
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By (I x E)—quasiconvexity of g; on S x M and (3.1), we obtain

gi(Ax1+ (1 —=A)x2,AE (&) + (1 - A)E(e2)) < max{gi(x1,E(e1)),8i(x2,E(&2))}
< 0.
(3.4)
Similarly, by(/ x E)—quasimonotonic of /; on § x M and (3.2), we can get
hj(Axi 4+ (1 —=2A)x2,AE(&1) + (1 —A)E(&2)) = 0. (3.3)

Therefore, by (3.3-3.5), we obtain
Axi+(1—A)x; €R(AE(g)) + (1 —A)E(&)),

which means that A(RoE) (&) + (1 —A)(RoE)(&) CR(AE(g))+ (1 —A)E(g)),i.e., R
is E-convex on M.

The following result is now immediate.

Corollary 3.1. Consider the parametric problem P;(¢g). if f is (I x E)—convex on
the set {(x,€)|x € R(E(€)),e € M}, g; are (I x E)—quasiconvex on S X M, hj are (I x
E)—quasimonotonic on S X M, S is convex and M is E-convex, then f* is E-convex on
M.

Proof. This follows directly from Theorems 3.1 and Theorems 3.2.

The next result follows directly from Theorems 3.2.

Theorem 3.3. Consider the parametric problem P, (¢). if g; are (I x E)—quasiconvex
onSxM,hjare (I x E)—quasimonotonic on S x M, S is convex and M is E-convex, then
R, given by

R(e)={xeS|gi(x) <&,i=1,2,---,m, hj(x) =&uyj,j=1,2,---,p},

is E-convex on M.

Corollary 3.2. Consider the parametric problem P;(€). if f is (I x E)—convex on
the set {(x,€)|x € R(E(€)),e € M}, g; are (I x E)—quasiconvex on S x M, hj are (I x
E)—quasimonotonic on S X M, S is convex and M is E-convex, then f* is E-convex on
M.

Proof. This follows directly from Theorems 3.1 and Theorems3.3.
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