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Abstract Consider a general parametric optimization problem P(ε) of the form min
x

f (x,ε), s.t.

x ∈ R(ε). Convexity and generalized convexity properties of the optimal value function f ∗ and the
solution set map S∗ form an important part of the theoretical basis for sensitivity, stability, and para-
metric analysis in mathematical optimization. Fiacco and Kyparisis [1] systematically discussed
the convexity and concavity of f ∗ for the above parametric program P(ε) and its several special
forms. In this paper, we extend these main results in [1] to the E-convexity of f ∗ by introducing
E-convexity of set-valued maps.

Keywords Optimal value function; E-convex functions; E-quasiconvex functions; E-convex set-
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1 Introduction
Let Rn denote the n−dimensional Euclidean space. We consider a general para-

metric optimization problem of the from

P(ε)
{

min f (x,ε)
s.t. x ∈ R(ε),

where f : Rn×Rk→R1 and R is a set-valued map from Rk to Rn, as well as several spe-
cializations of this problem. The optimal value function f ∗ of problem P(ε) (sometimes
called the perturbation function or the marginal function)is defined as

f ∗ =

{
inf

x
{ f (x,ε)|x ∈ R(ε)}, if R(ε) 6= /0,

+∞, if R(ε) = /0.

and the solution set-valued mappings S∗ is defined by

S∗(ε) = {x ∈ R(ε)| f (x,ε) = f ∗(ε)}.
We also consider the following several special programs of P(ε):

P1(ε)





min
x∈S

f (x,ε)

s.t. gi(x,ε)≤ 0, i = 1,2, · · · ,m,
h j(x,ε) = 0, j = 1,2, · · · , p,

The Ninth International Symposium on Operations Research and Its Applications (ISORA’10)
Chengdu-Jiuzhaigou, China, August 19–23, 2010
Copyright © 2010 ORSC & APORC, pp. 75–82



where S ⊂ Rn,gi : Rn×Rk → R1, i = 1,2, · · · ,m,h j : Rn×Rk → R1, j = 1,2, · · · , p,
i.e., with R defined by

R(ε) = {x ∈ S|gi(x,ε)≤ 0, i = 1,2, · · · ,m, h j(x,ε) = 0, j = 1,2, · · · , p}.

P2(ε)





min
x∈S

f (x,ε)

s.t. gi(x)≤ εi, i = 1,2, · · · ,m,
h j(x) = εm+ j, j = 1,2, · · · , p,

where S ⊂ Rn,gi : Rn×Rk → R1, i = 1,2, · · · ,m,h j : Rn×Rk → R1, j = 1,2, · · · , p,
i.e., with R defined by

R(ε) = {x ∈ S|gi(x)≤ εi, i = 1,2, · · · ,m, h j(x) = εm+ j, j = 1,2, · · · , p}.

Convexity, concavity and other fundamental properties of the optimal value function
f ∗ and the solution set-valued map S∗, such as continuity, differentiability, and so forth,
form a theoretical basis for sensitivity, stability, and parametric analysis in nonlinear opti-
mization. From the mid-1970s to the mid-1980s, the study of this area has been obtained
intensively. Many papers had tired to unify these theories and methodologies, for instance
[2-4]. Until 1986, Fiacco and Kyparisis[1] have systematically discussed the convexity
and concavity of f ∗ for the above parametric program P(ε) and its several special forms.
Similarly, generalized convexity properties of the optimal value function f ∗ and the solu-
tion set map S∗, also play a role of theoretical basis for sensitivity, stability and paramet-
ric analysis in nonlinear programming. Zhang[5] discussed preinvexity and preincavity
properites of f ∗.

Recently, Youness [6] introduced a class of sets and a class of functions called E-
convex sets and E-convex functions by relaxing the definitions of convex sets and convex
functions, which has some important applications in various branches of mathematical
sciences[7-9].

Motivated both by earlier research works and by the importance of the concepts of
convexity and generalized convexity, we introduce the concepts of E-convex set-valued
map and essentially E-convex set-valued map, and then develop some basic properties
of E-convex and essentially E-convex set-valued maps. Based on theses new concepts,
E-convexity properties of the optimal value function f ∗ for the parametric optimization
problem P(ε) and its several special forms are considered.

2 E-convexity of set-valued maps
In this section, we introduce two concepts of generalized convexity of set-valued

maps. Troughtout this section, M is a nonempty subset in Rk, and R is a set-valued
map from M to Rn.

Definition 2.1.([6]) A set M is said to be E-convex if there is a map E : Rk →Rk

such that
(1−λ )E(x)+λE(y) ∈M,

for each x,y ∈M and λ ∈ [0,1].
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Lemma 2.1.([6]) If a set M is E-convex, then E(M)⊂M.

It is known from Lemma 2.1 that E(M) ⊆M. Hence, for any set-valued map R, we
have the following observations:
Observation(a) The set-valued map R◦E : M→ 2Rn

defined by

(R◦E)(x) = R(E(x)) for all x ∈M

is well defined.
Observation(b) The Restriction R̃ : E(M)→ 2Rn

of R : M→ 2Rn
to E(M) defined by

R̃(x̃) = R(x̃) for all x̃ ∈ E(M)

is well defined.
Definition 2.2.([1]) Let M be a convex set.
(1) The set-valued map R is called convex on M if, for any ε1,ε2 ∈M and λ ∈ [0,1],

λR(ε1)+(1−λ )R(ε2)⊂ R(λε1 +(1−λ )ε2).

(2) The set-valued map R is called essentially convex on M if, for any ε1,ε2 ∈M,ε1 6=
ε2 and λ ∈ [0,1],

λR(ε1)+(1−λ )R(ε2)⊂ R(λε1 +(1−λ )ε2).

Based on the concept of convex set-valued maps and essentially convex set-valued
maps, we introduce the concepts of E-convex set-valued maps and essentially E-convex
set-valued maps.

Definition 2.3. (1) The set-valued map R is called E-convex on M if there is a map
E : Rk→Rk such that M is an E-convex set and

λ (R◦E)(ε1)+(1−λ )(R◦E)(ε2)⊂ R(λE(ε1)+(1−λ )E(ε2)),

for any ε1,ε2 ∈M and λ ∈ [0,1].
(2) The set-valued map R is called essentially E-convex on M if there is a map E :

Rk→Rk such that M is an E-convex set and

λ (R◦E)(ε1)+(1−λ )(R◦E)(ε2)⊂ R(λE(ε1)+(1−λ )E(ε2)),

for any ε1,ε2 ∈M,E(ε1) 6= E(ε2) and λ ∈ [0,1].
Remark 2.1. If R is convex (resp. essentially convex) on M, then R is E-convex (resp.

essentially E-convex) on M.
Remark 2.2. If R is E-convex on M, then it is essentially E-convex on M. However,

the converse is not true. See example 2.1.
Remark 2.3. If R is E-convex on M, then it is convex-valued with respect to E on M,

i.e., (R◦E)(ε) at each ε ∈M is a convex set. However, An essentially convex set-valued
map may not be convex-valued with respect to E at the boundary points of M, as shown
below.
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Example 2.1. Let E : R2→R2 be an identify map, R : R2→ R1 defined by

R(ε1,ε2) =





[0,1], if ε2
1 + ε2

2 < 1,
{0}∪{1}, if ε2

1 + ε2
2 = 1,

/0, if ε2
1 + ε2

2 > 1.

and
M = {(ε1,ε2)|ε2

1 + ε2
2 ≤ 1}.

It is easy to check that R is essentially E-convex on M, but (R◦E)(ε1,ε2) is not convex if
ε2

1 + ε2
2 = 1.

From now on, let E be a map from Rk to Rk and M be a nonempty E-convex set.
Proposition 2.1. Let R be E-convex (resp. essentially E-convex) on M. Then the

restriction, say R̄ : C→ 2Rn
, of R to any nonempty convex subset C of E(M) is convex

(resp. essentially convex) on C.
Proof. Let C ⊂ E(M) be convex, and let ε̄1, ε̄2 ∈ C (ε̄1 and ε̄2 may not be distinct).

Then there exist ε1,ε2 ∈M such that ε̄1 = E(ε1) and ε̄2 = E(ε2). Since λ ε̄1+(1−λ )ε̄2 ∈
C, it follows from the E-convexity of R that

λ R̄(ε̄1)+(1−λ )R̄(ε̄2) = λ R̄(E(ε1))+(1−λ )R̄(E(ε2))
= λ (R◦E)(ε1)+(1−λ )(R◦E)(ε2)
⊂ R(λE(ε1)+(1−λ )E(ε2))
= R̄(λ ε̄1 +(1−λ )ε̄2)

for all λ ∈ [0,1]. Hence, R̄ is convex on C.
Corollary 2.1. Let R be E-convex (resp. essentially E-convex) on M. If E(M)⊂M is

a convex set, then the restriction R̃ : E(M)→ 2Rn
of R to E(M) is convex (resp. essentially

convex) on E(M).
Proposition 2.2. Let E(M) ⊂M be a convex set . If the restriction R̃ : E(M)→ 2Rn

of R to E(M) is convex (resp. essentially convex) on E(M), then R is E-convex (resp.
essentially E-convex) on M.

Proof. Let ε1,ε2 ∈M. Then E(ε1),E(ε2) ∈ E(M), and by the convexity of E(M), we
can obtain λE(ε1)+ (1−λ )(ε2) ∈ E(M) for all λ ∈ [0,1]. Since R̃ is convex on E(M),
we have

λ (R◦E)(ε1)+(1−λ )(R◦E)(ε2) = λR(E(ε1))+(1−λ )R(E(ε2))
= λ R̃(E(ε1))+(1−λ )R̃(E(ε2))
⊂ R̃(λE(ε1)+(1−λ )E(ε2))
= R(λE(ε1)+(1−λ )E(ε2)),

which shows R is E-convex on M.
Corollary 2.2. Suppose that E(M) be convex . Then R is E-convex (resp. essentially

E-convex) on M if and only if its restriction R̃ : E(M)→ 2Rn
is convex (resp. essentially

convex) on E(M).
Let the map I×E : Rn×Rk→Rn×Rk be

(I×E)(x,ε) = (x,E(ε)), for any(x,ε) ∈Rn×Rk.
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Denote
G(R) = {(x,ε)|x ∈ R(ε),ε ∈M}.

It is easy to show that G(R) is I×E−convex, if and only if

(λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2)) ∈ G(R)

for each (x1,ε1),(x2,ε2) ∈ G(R) and λ ∈ [0,1].
Proposition 2.3. Suppose R is E-convex on M. If R(ε)⊂ (R◦E)(ε) for each ε ∈M,

then G(R) is I×E−convex.
Proof. Let (x1,ε1),(x2,ε2) ∈ G(R) and λ ∈ [0,1]. Then, x1 ∈ R(ε1),x2 ∈ εR(ε2). By

the assumption that R(ε)⊂ (R◦E)(ε), we obtain

x1 ∈ (R◦E)(ε1), x2 ∈ (R◦E)(ε2). (2.1)

Since R is E-convex on M and (2.1), we get

λx1 +(1−λ )x2 ∈ R(λE(ε1)+(1−λ )E(ε2)), (2.2)

which means that (λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2)) ∈ G(R). Therefore, G(R) is
I×E−convex.

Proposition 2.4. Suppose G(R) is I × E−convex. If (R ◦ E)(ε) ⊂ R(ε) for each
ε ∈M, then R is E-convex on M.

Proof. Let ε1,ε2 ∈ M and λ ∈ [0,1]. Take arbitrary points x1 ∈ (R ◦E)(ε1),x2 ∈
(R◦E)(ε2). Then, it follows from (R◦E)(ε)⊂ R(ε) for each ε ∈M

x1 ∈ R(ε1), x2 ∈ R(ε2). (2.3)

That is,
(x1,ε1),(x2,ε2) ∈ G(R). (2.4)

Since G(R) is I×E−convex and (2.4), we get

(λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2)) ∈ G(R). (2.5)

That is,
λx1 +(1−λ )x2 ∈ R(λE(ε1)+(1−λ )E(ε2)),

which shows that R is E-convex on M.

3 E-convexity of the optimal value function
In this section, we give the main results.
Definition 3.1.([6]) A function g : Rk→R1 is said to be E-convex on a set M ⊂Rk

if there is a map E : Rk→Rk such that M is an E-convex set and

g(λE(ε1)+(1−λ )E(ε2))≤ λg(E(ε1))+(1−λ )g(E(ε2)),

for each ε1,ε2 ∈M and λ ∈ [0,1].
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It is easy to show that f : Rn×Rk→R1 is (I×E)−convex on Rn×M, if and only
if

f (λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2))≤ λ f (x1,E(ε1))+(1−λ ) f (x2,E(ε2))

for each (x1,ε1),(x2,ε2) ∈Rn×M and λ ∈ [0,1].
Theorem 3.1. Consider the general parametric optimization problem P(ε). if f is

(I×E)−convex on the set {(x,ε)|x ∈ R(E(ε)),ε ∈M}, R is essentially E-convex on M,
and M is E-convex, then f ∗ is E-convex on M.

Proof. Let ε1,ε2 ∈M,ε1 6= ε2, and λ ∈ [0,1]. Then, by the (I×E)−convexity of f
and essential E-convexity of R, we obtain

f ∗(λE(ε1)+(1−λ )E(ε2))
= inf

x∈R(λE(ε1)+(1−λ )E(ε2))
f (x,λE(ε1)+(1−λ )E(ε2))

≤ inf
x1∈(R◦E)(ε1),x2∈(R◦E)(ε2)

f (λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2))

≤ inf
x1∈(R◦E)(ε1),x2∈(R◦E)(ε2)

[λ f (x1,E(ε1))+(1−λ ) f (x2,E(ε2))]

= λ inf
x1∈(R◦E)(ε1)

f (x1,E(ε1))+(1−λ ) inf
x2∈(R◦E)(ε2)

f (x2,E(ε2))

= λ f ∗(E(ε1))+(1−λ ) f ∗(E(ε2)),

i.e., f ∗ is E-convex on M.
Definition 3.2.([10]) A function g : Rk → R1 is said to be E-quasiconvex on a set

M ⊂Rk if there is a map E : Rk→Rk such that M is an E-convex set and

g(λE(ε1)+(1−λ )E(ε2))≤max{g(E(ε1)),g(E(ε2))},

for each ε1,ε2 ∈M and λ ∈ [0,1].
The functions g is said to E-quasiconcave, if −g is E-quasiconvex; g is said to E-

quasimonotonic, if g both is E-quasiconvex and E-quasiconcave.
Theorem 3.2. Consider the parametric problem P1(ε). if gi are (I×E)−quasiconvex

on S×M, h j are (I×E)−quasimonotonic on S×M, S is convex and M is E-convex, then
R, given by

R(ε) = {x ∈ S|gi(x,ε)≤ 0, i = 1,2, · · · ,m, h j(x,ε) = 0, j = 1,2, · · · , p},

is E-convex on M.
Proof. Let ε1,ε2 ∈ M and take arbitrary points x1 ∈ (R ◦E)(ε1),x2 ∈ (R ◦E)(ε2).

Then, x1,x2 ∈ S,

gi(x1,E(ε1))≤ 0,gi(x2,(Eε2))≤ 0, i = 1,2, · · · ,m (3.1)

and
h j(x1,E(ε1)) = 0,h j(x2,(E(ε2)) = 0, j = 1,2, · · · , p. (3.2)

Since S is convex and M is E-convex, we have

λx1 +(1−λ )x2 ∈ S and λE(ε1)+(1−λ )E(ε2) ∈M for any λ ∈ [0,1]. (3.3)
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By (I×E)−quasiconvexity of gi on S×M and (3.1), we obtain

gi(λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2)) ≤ max{gi(x1,E(ε1)),gi(x2,E(ε2))}
≤ 0.

(3.4)
Similarly, by(I×E)−quasimonotonic of h j on S×M and (3.2), we can get

h j(λx1 +(1−λ )x2,λE(ε1)+(1−λ )E(ε2)) = 0. (3.5)

Therefore, by (3.3-3.5), we obtain

λx1 +(1−λ )x2 ∈ R(λE(ε1)+(1−λ )E(ε2)),

which means that λ (R◦E)(ε1)+(1−λ )(R◦E)(ε2)⊂ R(λE(ε1)+(1−λ )E(ε2)), i.e., R
is E-convex on M.

The following result is now immediate.
Corollary 3.1. Consider the parametric problem P1(ε). if f is (I×E)−convex on

the set {(x,ε)|x ∈ R(E(ε)),ε ∈ M}, gi are (I×E)−quasiconvex on S×M, h j are (I×
E)−quasimonotonic on S×M, S is convex and M is E-convex, then f ∗ is E-convex on
M.

Proof. This follows directly from Theorems 3.1 and Theorems 3.2.
The next result follows directly from Theorems 3.2.
Theorem 3.3. Consider the parametric problem P2(ε). if gi are (I×E)−quasiconvex

on S×M, h j are (I×E)−quasimonotonic on S×M, S is convex and M is E-convex, then
R, given by

R(ε) = {x ∈ S|gi(x)≤ εi, i = 1,2, · · · ,m, h j(x) = εm+ j, j = 1,2, · · · , p},

is E-convex on M.
Corollary 3.2. Consider the parametric problem P2(ε). if f is (I×E)−convex on

the set {(x,ε)|x ∈ R(E(ε)),ε ∈ M}, gi are (I×E)−quasiconvex on S×M, h j are (I×
E)−quasimonotonic on S×M, S is convex and M is E-convex, then f ∗ is E-convex on
M.

Proof. This follows directly from Theorems 3.1 and Theorems3.3.
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