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Abstract It is an important problem to determine the tenuring threshold to meet the pause time
goal for a generational garbage collector. From such viewpoint, this paper proposes two stochastic
models based on the working schemes of a generational garbage collector: One is random minor
collection which occurs at a nonhomogeneous Poisson process and the other is periodic minor
collection which occurs at periodic times. Since the cost suffered for minor collection increases,
as the amount of surviving objects accumulates, tenuring minor collection should be made at some
tenuring threshold. Using the techniques of cumulative processes and reliability theory, expected
cost rates with tenuring threshold are obtained, and optimal policies which minimize them are
discussed analytically and computed numerically.
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1 Introduction
The technique of garbage collection [1] is the automatic process of memory recycling

in computer science community, in which objects no longer referenced by program are
called garbage and should be thrown away. A garbage collector must determine which
objects are garbage and make the heap space occupied by such garbage available again
for subsequent new objects.

A garbage collection plays an important role of Java’s security strategy, however, it
adds a large overhead that can deteriorate program performance. In recent years, genera-
tional garbage collection is popular with programmers for the reason that it can be made
more efficiently and fast. Based on the weak generational hypothesis which asserts that
most objects are short-lived after their allocation, a generational garbage collector seg-
regate objects by age into two or more regions of the heap called generations [2]. For
instance, the garbage collector, which is used in Sun’s HotSpot Java Virtual Machine,
manages heap space for both young and old generations [3]: new objects space Eden, two
equal survivor spaces for surviving objects SS]1 and SS]2, and tenured objects space Old
(Tenured), where Eden, SS]1 and SS]2 are for young generation, and Old (Tenured) is for
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Figure 1: One cycle of minor collections

old one. Different generations can be collected at different frequencies, which means that
young generation is collected more frequently than old one.

A generational garbage collector uses minor collection for young generation and ma-
jor collection for multi-generation. Most generational garbage collectors are copying
collectors, although it is possible to use mark-sweep collectors [4]. In this paper, we
concentrate only on a generational garbage collector using copying collection. New ob-
jects are allocated in Eden. When Eden fills up, minor collection occurs and surviving
objects are copied from Eden to survivor space. When Eden fills up again, all surviving
objects from Eden and from the previously used survivor space are copied into the other
survivor space. In this fashion, one survivor space always maintains surviving objects,
while the other is empty. The minor collection copies surviving objects between survivor
spaces until they become tenured, i.e., tenuring minor collection occurs, and then, those
objects are copied to old generation (Fig.1). Therefore, Old contains the tenured objects
that are expected to be long-lived. When Old fills up, a major collection of the whole
heap occurs, and surviving objects from Old are kept in Old, while objects from Eden
and survivor space are kept in a survivor space. However, for every minor collection,
the manner of stop and copy pauses all application threads to collect the garbage. The
duration of time in which garbage collection has worked is called pause time [1], which
is an important parameter for interactive systems, and depends largely upon the amount
of surviving objects.

As an application of damage models, garbage collection models for database in a
computer system [5] were studied, however, the theoretical points of garbage collection
was not considered essentially. With regarding to garbage collection modeling, there have
been very few research papers that studied analytically optimal policies for a generational
garbage collector. Most problems were concerned with several ways to introduce garbage
collection methods. This paper considers a pause time goal which is called time cost or
cost for the simplicity. Our problem is to obtain an optimal tenuring threshold which
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minimizes the expected cost rate: If tenuring threshold is too low, objects that would have
died in young generation are copied into old generation. This causes frequent tenuring
minor collection, and the old generation is filled up with garbage too soon, resulting in
a major collection with a long pause time. On the other hand, if the tenuring threshold
is too high, although objects have enough time to die, the amount of surviving objects
accumulates in the survivor space, and cost suffered for minor collection increases.

We formulate two stochastic models based on the working schemes of a generational
garbage collector: random and periodic minor collection models. Using the techniques
of cumulative processes [6] and reliability theory [7, 8], expected cost rates are obtained,
and optimal policies which minimize them are discussed analytically and computed nu-
merically.

2 Models and Optimal Policies
In this paper, two basic assumptions are given as follows: (i) Survivor rate αk (0 ≤

αk < 1;k = 1,2,3, · · ·), where 1 > α1 > α2 > · · ·> αk > · · · ≥ 0, means that new objects
will survive 100αk percent at the kth minor collection. (ii) New objects can be tenured
only if they survive at least one minor collection, because objects that survive two minor
collections are much less than those survive just one minor collection [1], i.e., increasing
the number of minor collection beyond the two times is likely to reduce surviving objects
slightly.

2.1 Random Minor Collection
For the second basic assumption, there are some objects α1G in a survivor space at

time 0, which are surviving objects from last tenuring minor collection, where G is a
constant. New objects are allocated in Eden. When new objects reach the threshold G
in Eden, minor collection occurs, and the surviving objects α1G from Eden and α2G
from survivor space are copied to the other space. When new objects reach the threshold
G in Eden again, all surviving objects α1G from Eden and α2G+α3G from previously
used survivor space are copied into the other space. In the fashion above, tenuring minor
collection is made at Nth (N = 1,2, · · ·) minor collection. The surviving objects from
Eden and from survivor space are copied to the survivor space and Old, respectively.
After tenuring minor collection, another minor collection cycle begins.

It is assumed that the times between the new objects reach G are random variables,
i.e., minor collection occurs at a nonhomogeneous Poisson process with an intensity func-
tion λ (t) and a mean-value function R(t) ≡ ∫ t

0 λ (u)du. Then, the probability that minor
collections occur exactly j times in (0, t] is

H j(t)≡
[R(t)] j

j!
e−R(t) ( j = 0,1,2, · · ·),

and the mean time to tenuring minor collection is

∫ ∞

0
tHN−1(t)λ (t)dt =

N−1

∑
j=0

∫ ∞

0
H j(t)dt. (1)
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Then, the surviving objects at the kth minor collection is

α1G+α2G+ · · ·+αk+1G = G
k+1

∑
i=1

αi (k = 1,2, · · ·).

The following costs are introduced: Let c1 + c2x be the cost suffered for every mi-
nor collection and c3 (c3 > c1) be the cost suffered for tenuring minor collection, where
x is the surviving objects that should be copied. Then, the expected cost at kth minor
collection is

Ck ≡ c1 + c2G
k+1

∑
i=1

αi (k = 1,2, · · ·),

where C0 ≡ 0. Therefore, the expected cost rate is

C1(N) =
∑N−1

j=1 C j + c3

∑N−1
j=0

∫ ∞
0 H j(t)dt

(N = 1,2, · · ·). (2)

We seek an optimal number N∗1 that minimizes C1(N). From the inequality C1(N +
1)−C1(N)≥ 0,

CN
∑N−1

j=0
∫ ∞

0 H j(t)dt
∫ ∞

0 HN(t)dt
−

N−1

∑
j=1

C j ≥ c3. (3)

Denoting the left-hand side in (3) by L(N),

L(N +1)−L(N) =
N

∑
j=0

∫ ∞

0
H j(t)dt

(
CN+1∫ ∞

0 HN+1(t)dt
− CN∫ ∞

0 HN(t)dt

)
.

From [7,p.97], if λ (t) is increasing in t, then
∫ ∞

0 H j(t)dt is decreasing in j, and converges
to 1/λ (∞) as j→ ∞, where 1/λ (∞) = 0 whenever λ (∞) = ∞. Thus, because C j is in-
creasing strictly in j, if λ (t) is increasing in t and L(∞)> c3, then there exists a finite and
unique minimum N∗1 (1≤ N∗1 < ∞) which satisfies (3), and the expected cost rate is

CN∗1−1∫ ∞
0 HN∗1−1(t)dt

<C1(N∗1 )≤
CN∗1∫ ∞

0 HN∗1 (t)dt
. (4)

2.2 Periodic Minor Collection
For the second basic assumption, there are some objects α1X0 in a survivor space at

time 0, which are surviving objects from the last tenuring minor collection. New objects
are allocated in Eden. It is assumed that minor collection occurs at time kT (k = 1,2, · · ·)
for constant T > 0 and an amount Xk of new objects in Eden at kT has an identical
distribution G(x)≡ Pr{Xk ≤ x}. That is, when the first minor collection occurs, surviving
objects α1X1 from Eden and α2X0 from survivor space are copied to the other space.
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When the second minor collection occurs, surviving objects α1X2 from Eden and α2X1 +
α3X0 from the previously used survivor space are copied into the other space. In the
fashion above, tenuring minor collection is made at time NT (N = 1,2, · · ·). The other
assumptions are the same as the random minor collection.

Then, the surviving objects at the kth minor collection is

α1Xk +α2Xk−1 + · · ·+αk+1X0 =
k

∑
j=0

α j+1Xk− j (k = 1,2, · · ·).

Because X0 and Xk (k = 1,2, · · ·) have an identical distribution G(x), the distribution of
the total surviving objects at the kth collection is

Pr

{
k

∑
j=0

α j+1Xk− j ≤ x

}
= G(k)(x) (k = 1,2, · · ·),

and the expected cost of minor collection at time kT is

Ĉk =
∫ ∞

0
(c1 + c2x)dG(k)(x) (k = 1,2, · · ·),

where Ĉ0 ≡ 0. Therefore, the expected cost rate is

C2(N) =
c3− c1 + c2 ∑N−1

k=1
∫ ∞

0 xdG(k) (x)
NT

+
c1

T
(N = 1,2, · · ·). (5)

We seek an optimal number N∗2 analytically that minimizes C2(N). From the inequal-
ity C2(N +1)−C2(N)≥ 0,

N−1

∑
k=1

∫ ∞

0

[
G(k) (x)−G(N) (x)

]
dx+

∫ ∞

0

[
1−G(N) (x)

]
dx≥ c3− c1

c2
. (6)

Denoting the left-hand side in (6) by U(N),

U(N +1)−U(N) = (N +1)
∫ ∞

0

[
G(N) (x)−G(N+1) (x)

]
dx.

Because G( j) (x) is decreasing in j, U(N) is increasing in N. If U(∞)> (c3−c1)/c2, then
there exists a finite and unique minimum N∗2 (1 ≤ N∗2 < ∞) which satisfies (6), and the
expected cost rate is

c2
∫ ∞

0

[
1−G(N∗2−1) (x)

]
dx

T
<C2(N∗2 )−

c1

T
≤

c2
∫ ∞

0

[
1−G(N∗2 ) (x)

]
dx

T
. (7)

3 Numerical Examples
For random minor collection, suppose that minor collection occurs in a Poisson pro-

cess with rate λ , i.e., λ (t)≡ λ , H j(t) = [(λ t) j/ j!]e−λ t . Then, from (3),

N−1

∑
j=0

(CN −C j)≥ c3, (8)
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Table 1: Optimal N∗ and C(N∗) when c1 = 1, c2G = c2µ = 10 and T = 1/λ = 1.

c3
α 20 40 60

N∗ C(N∗) N∗ C(N∗) N∗ C(N∗)
0.2 11 7.1343 22 8.3990 32 9.1519
0.4 6 10.9333 11 13.3595 17 14.8028
0.6 4 13.8750 8 17.4705 11 19.5847
0.8 3 16.2222 6 21.0333 9 23.8131

whose left-hand side is increasing in N. Thus, if ∑∞
j=0(C∞−C j) ≥ c3, then 1 ≤ N∗1 < ∞.

In this case, if C1 > c3, which means that the first minor collection cost is greater than
tenuring minor collection cost, then N∗1 = 1.

For periodic minor collection, When Xi (i = 0,1,2, · · ·) has a normal distribution
N(µi,σ2

i )

k

∑
i=0

αi+1Xk−i ∼ N

(
k

∑
i=0

αi+1µk−i,
k

∑
i=0

α2
i+1σ2

k−i

)
.

Then, from (6),

N

∑
k=1

N

∑
i=0

αi+1µN−i−
N−1

∑
k=1

k

∑
i=0

αi+1µk−i ≥
c3− c1

c2
. (9)

In this case, a finite N∗2 (1≤ N∗2 < ∞) exists uniquely. If c1 +c2(α1µ1 +α2µ0)> c3, then
N∗2 = 1.

Suppose that αk = α/k (0 < α < 1;k = 1,2, · · ·). An optimal N∗1 (1 ≤ N∗1 < ∞)
satisfies, from (8),

N +1−
N

∑
j=1

1
j+1

≥ c3− c1

αGc2
, (10)

an optimal N∗2 (1≤ N∗2 < ∞) satisfies, from (9),

N
N

∑
i=0

µN−i

i+1
−

N−1

∑
k=1

k

∑
i=0

µk−i

i+1
≥ c3− c1

αc2
. (11)

In particular, when µk ≡ µ and σk ≡ σ , this agrees with (10) for G = µ , i.e., when G = µ
and T = 1/λ , C1(N) and C2(N) become

C(N)≡ C1(N)

λ
=

C2(N)

λ
=

(N−1)c1 + c2µα ∑N−1
j=1 ∑ j+1

i=1 (1/i)+ c3

N
.

Tables 1 presents the optimal N∗ and C(N∗), for c3 = 20, 40, 60 and α = 0.2, 0.4, 0.6,
0.8 when c1 = 1, c2G = c2µ = 10, T = 1/λ = 1. These show that N∗ is increasing with
c3 and decreasing with α , C(N∗) is increasing with both c3 and α .
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4 Conclusions
We have solved the optimization problem theoretically when to make the tenuring

minor collection for a generational garbage collector. Two stochastic models were con-
sidered, where the random and periodic minor collections occur at a nonhomogeneous
Poisson process and at periodic times, respectively. Using the techniques of cumulative
processes and reliability theory, the expected cost rates of each model were derived, and
the optimal policies which minimize them were discussed analytically. Furthermore, op-
timal policies and their expected cost rates were computed and compared numerically.
Useful discussions for these results were made. Such theoretical results would be applied
to actual garbage collections by suitable modifications.
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