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Abstract In some practical situations, most systems would fail roughly with time by both causes
of additive and independent damages. From such viewpoints, this paper considers three combined
replacement policies with two kinds of damages: The unit is replaced at a planned time or when
the total additive damage exceeds a failure level, whichever occurs first, and undergoes minimal
repair when independent damage occurs. First, a standard cumulative damage model where the unit
suffers some damage due to shocks and the total damage is additive is considered. Second, the
total damage is measured only at periodic times. Third, the total damage approximately increases
linearly with time t. Using the theory of cumulative processes, expected cost rates are obtained, and
optimal policies which minimize them are derived analytically.
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1 Introduction
Most systems might fail due to the total damage stored within them by shocks such

as jolt, stress, or environment change. This is well-known as the cumulative damage
model: A unit is subjected to shocks and suffers some damage due to shocks. The total
damage is additive, and the unit fails when it has exceeded a failure level. The reliability
properties and optimal maintenance policies for various damage models were summarized
sufficiently [1]. On the other hand, the total damage is not additive, and the unit fails when
the damage due to some shock has exceeded a failure level. This is called the independent
damage model, and its typical examples are the fracture of brittle materials such as glasses
[2], and semiconductor parts which have failed by some overcurrent or fault voltage. Most
units would fail roughly with time by both causes of additive and independent damages.

First, we take up a standard cumulative damage model where the unit suffers some
damage due to shocks and the total damage is additive. However, it might be impossible
to estimate and know occurrences of shocks and the total damage every at each shock.
Second, the total damage is measured only at periodic times. Third, the total damage
approximately increases linearly with time.
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This paper considers age replacement policies that are combined with additive and
independent damage, in which the unit is replaced at a planned time or when the total
damage exceeds a failure level, whichever occurs first, and undergoes minimal repair
when independent damage occurs. Expected cost rates of three kinds of models are ob-
tained by using the techniques of cumulative processes [3] and reliability theory [4], and
optimal policies which minimize them are derived analytically.

The damage model can be applied to the garbage collection model [5] of database
systems by replacing shock by update and damage by garbage, and the backup model [6]
by replacing shock by update and damage by dumped file. This could be also applied to a
reorganization model of structural database by replacing shock by update, and damage 1
by structural deterioration and damage 2 by split data deterioration [7, 8].

2 Standard Model
Suppose that shocks occur at a renewal process with a general distribution F(t) with

finite mean 1/λ and a density function f (t) ≡ F ′(t). An amount Wj of damage due to
the jth shock has an identical distribution G(x)≡ Pr{Wj ≤ x} with finite mean µ , and the
total damage is additive. We call it damage 1. It is assumed that the unit fails when the
total damage exceeds a failure level K (0 < K < ∞) at some shock.

Suppose that the unit is replaced at time T (0 < T ≤∞) or at failure, whichever occurs
first. Then, the expected cost rate is, from [1, p.42],

C̃1(T ) =
cK− (cK− cT )∑∞

j=0[F
( j)(T )−F( j+1)(T )]G( j)(K)

∑∞
j=0 G( j)(K)

∫ T
0 [F( j)(t)−F( j+1)(t)]dt

, (1)

where φ ( j)(x) ( j = 1,2, · · ·) denotes the j-fold Stieltjes convolution of any function φ(x)
with itself and φ (0)(x) ≡ 1 for t ≥ 0, cK = replacement cost at failure and cT = replace-
ment cost at time T , where cK > cT .

Next, suppose that another damage 2 occurs at a nonhomogeneous Poisson process
with an intensity function h(t) and a mean-value function H(t)≡ ∫ t

0 h(u)du, i.e., the prob-
ability of j occurrences of damage 2 during (0, t] is p j(t) = {[H(t)] j/ j!}e−H(t) ( j =
0,1,2, · · ·).

It is assumed that damage 2 occurs independently of damage 1, and also its damage
is not additive which is called independent damage [1, p.21]. That is, when damage 2
occurs, the unit undergoes only minimal repair. Thus, the expected number of occurrences
of damage 2, i.e., minimal repair, before the replacement is

H(T )
∞

∑
j=0

[F( j)(T )−F( j+1)(T )]G( j)(K)

+
∞

∑
j=0

[G( j)(K)−G( j+1)(K)]
∫ T

0
H(t)dF( j+1)(t)

=
∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)]dH(t). (2)
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Therefore, adding the minimal repair cost to C̃1(T ) in (1),

C1(T ) =

cK− (cK− cT )
∞

∑
j=0

G( j)(K)[F( j)(T )−F( j+1)(T )]

+cM

∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)]dH(t)

∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)]dt

, (3)

where cM = minimal repair cost for damage 2. Clearly, C1(0) = ∞, and

C1(∞) =
cK + cM ∑∞

j=0 G( j)(K)
∫ ∞

0 [F( j)(t)−F( j+1)(t)]dH(t)

[1+M(K)]/λ
,

where M(K)≡ ∑∞
j=1 G( j)(K), and note that the denominator represents the mean time to

replacement when the total damage exceeds a failure level K. Thus, there exists a positive
T ∗1 (0 < T ∗1 ≤ ∞) which minimizes C1(T ) in (3).

We find an optimal T ∗1 which minimizes C1(T ). Differentiating C1(T ) with respect to
T and setting it equal to zero,

(cK− cT )

{
Q1(T )

∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)]dt

−
∞

∑
j=0

F( j+1)(T )[G( j)(K)−G( j+1)(K)]

}

+cM

∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)][h(T )−h(t)]dt = cT , (4)

where

Q1(T )≡
∑∞

j=0 f ( j+1)(T )[G( j)(K)−G( j+1)(K)]

∑∞
j=0 G( j)(K)[F( j)(T )−F( j+1)(T )]

.

It can be clearly seen that if Q1(T ) is strictly increasing and h(t) is increasing, or
Q1(T ) is increasing and h(t) is strictly increasing, then the left-hand side of (4) is strictly
increasing from 0 to

(cK− cT )

{
Q1(∞)

λ
[1+M(K)]−1

}
+ cM

{
h(∞)

λ
[1+M(K)]

−
∞

∑
j=0

G( j)(K)
∫ ∞

0
[F( j)(t)−F( j+1)(t)]h(t)dt

}
. (5)

Thus, if (5) is greater than cT , then there exists a finite and unique T ∗1 (0 < T ∗1 < ∞) which
satisfies (4). In this case, the expected cost rate is

C1(T ∗1 ) = (cK− cT )Q1(T ∗1 )+ cMh(T ∗1 ). (6)
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Furthermore, letting T1 be a solution of equation

Q1(T )
∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)]dt

−
∞

∑
j=0

F( j+1)(T )[G( j)(K)−G( j+1)(K)] =
cT

cK− cT
, (7)

then T1 > T ∗1 , and letting T2 be a solution of equation

∞

∑
j=0

G( j)(K)
∫ T

0
[F( j)(t)−F( j+1)(t)][h(T )−h(t)]dt =

cT

cM
, (8)

then T2 > T ∗1 . Both T1 and T2 would be useful for computing T ∗1 as its upper bounds.
On the other hand, when H(t) = αt, i.e., h(t) = α (α > 0), from (5), if Q1(∞)[1+

M(K)] > λcK/(cK − cT ), then there exists a finite T ∗1 (0 < T ∗1 < ∞) which satisfies (4).
In addition, when F(t) = 1− e−λ t and G(x) = 1− e−x/µ , it was shown in [1, p.48] that
G( j)(x) = ∑∞

i= j[(x/µ)i/i!]e−x/µ and M(x) = x/µ ,

Q1(T ) =
λ ∑∞

j=0[(λT ) j/ j!][G( j)(K)−G( j+1)(K)]

∑∞
j=0[(λT ) j/ j!]G( j)(K)

is strictly increasing from λe−K/µ to λ . Thus, if K/µ > cT/(cK−cT ), then there exists a
finite and unique T ∗1 (0 < T ∗1 < ∞) which satisfies (4).

3 Periodic Model
It is assumed that each amount Wn (n = 1,2, · · ·) of damage due to shocks is measured

only at periodic times nT0 (n = 1,2, · · ·) for a given T0 (0 < T0 < ∞) and has an identical
distribution GT (x) ≡ Pr{Wn ≤ x} with mean µT . The other assumptions are the same as
those in the standard model. Suppose that the unit is replaced at time NT0 or at failure,
whichever occurs first. Then, the expected cost rate is, from [1, p.84],

C̃2(N) =
cK− (cK− cN)G

(N)
T (K)

T0 ∑N−1
n=0 G(n)

T (K)
, (9)

where cN = replacement cost at time NT0.
The expected number of occurrences of minimal repairs due to damage 2 is

N−1

∑
n=0

H[(n+1)T0][G
(n)
T (K)−G(n+1)

T (K)]+H(NT0)G
(N)
T (K)

=
N−1

∑
n=0

[H((n+1)T0)−H(nT0)]G
(n)
T (K). (10)

Therefore, adding the minimal repair cost to C̃2(N) in (9),

C2(N) =
cK− (cK− cN)G

(N)
T (K)+ cM ∑N−1

n=0 [H((n+1)T0)−H(nT0)]G
(n)
T (K)

T0 ∑N−1
n=0 G(n)

T (K)
. (11)
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We find an optimal N∗2 which minimizes C2(N). From the inequality C2(N + 1)−
C2(N)≥ 0,

(cK− cN)

{
Q2(N +1)

N−1

∑
n=0

G(n)
T (K)− [1−G(N)

T (K)]

}

+cM

{
[H((N +1)T0)−H(NT0)]

N−1

∑
n=0

G(n)
T (K)

−
N−1

∑
n=0

[H((n+1)T0)−H(nT0)]G
(n)
T (K)

}
≥ cN , (12)

where

Q2(N)≡ G(N−1)
T (K)−G(N)

T (K)

G(N−1)
T (K)

.

Denoting the let-hand side in (12) by L2(N),

L2(N)−L2(N−1) =
N−1

∑
n=0

G(n)
T (K)

(
(cK− cN)[Q2(N +1)−Q2(N)]

+cM
{
[H((N +1)T0)−H(NT0)]− [H(NT0)−H((N−1)T0)]

})
.

Therefore, if Q2(N) is strictly increasing and h(t) is increasing, or Q2(N) is increasing
and h(t) is strictly increasing, then the left-hand side of (12) is strictly increasing to L2(∞).
Thus, if L2(∞) > cN , then there exists a finite and unique minimum N∗2 (1 ≤ N∗2 < ∞)
which satisfies (12). Furthermore, letting N1 be a solution of the equation

Q2(N +1)
N−1

∑
n=0

G(n)
T (K)− [1−G(N)

T (K)]≥ cN

cK− cN
, (13)

then N1 ≥ N∗2 , and letting N2 be a solution of the equation

[H((N +1)T0)−H(NT0)]
N−1

∑
n=0

G(n)
T (K)−

N−1

∑
n=0

[H((n+1)T0)−H(nT0)]G
(n)
T (K)≥ cN

cM
, (14)

then N2 ≥ N∗2 . In particular, when G( j)
T (x) = ∑∞

i= j[(x/µT )
i/i!]e−x/µT ,

Q2(N) =
(K/µT )

N−1/(N−1)!
∑∞

n=N−1(K/µT )n/n!

is strictly increasing from e−K/µT to 1 [1, p.24]. Thus, if K/µT > cN/(cK − cN), then
there exist a finite and unique minimum N1 which satisfies (13). On the other hand, when
H(t) = αt, if Q2(∞)[1+MT (K)]> cK/(cK− cN), then there exists a finite N∗2 (1≤ N∗2 <

∞) which satisfies (12). In addition, when G(x) = 1− e−x/µT , N∗2 = N1.
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4 Continuous Model
We consider two continuous damage models where the total damage Z(t) increases

linearly with time t according two probabilistic laws [3,p.26].

4.1 Model 1
Suppose that the total amount of damage increases with t [1, p.26]: It is assumed that

the total damage at time t is Z(t) = At, where A is a random variable whose distribution
is WA(x)≡ Pr{A≤ x}. Then, the probability that the unit does not fail in (0, t] is

Pr{Z(t)≤ K}= Pr{At ≤ K}= Pr{A≤ K/t}=WA(K/t). (15)

Suppose that the unit is replaced at time T or when the total damage exceeds K,
whichever occurs first. Then, the mean time to replacement is

TWA(K/T )+
∫ T

0
td[1−WA(K/t)] =

∫ T

0
WA(K/t)dt. (16)

Thus, by the similar method of obtaining (3), the expected cost rate is

C3(T ) =
cK− (cK− cT )WA(K/T )+ cM

∫ T
0 WA(K/t)dH(t)

∫ T
0 WA(K/t)dt

. (17)

Let rA(t) be the failure rate of WA(t), i.e., rA(t) ≡ −W ′A(t)/WA(t). Differentiating
C3(T ) with respect to T and setting it equal to zero,

(cK− cT )

{
rA(K/T )

∫ T

0
WA(K/t)dt− [1−WA(K/T )]

}

+cM

∫ T

0
WA(K/t)[h(T )−h(t)]dt = cT . (18)

Thus, if rA(t) is strictly increasing and h(t) is increasing or rA(t) is increasing and h(t) is
strictly increasing, if a solution T ∗3 to (18) exists, it is unique.

Next, suppose that the unit is replaced at time NT0 for T0 > 0 and when the total
damage exceeds K, whichever occurs first. Then, by the similar method of obtaining (11),
the expected cost rate is

C4(N) =
cK− (cK− cN)WA(K/NT0)+ cM ∑N−1

n=0 [H((n+1)T0)−H(nT0)]WA(K/nT0)

T0 ∑N−1
n=0 WA(K/nT0)

,

(19)

where define that when n = 0, WA(K/nT0)≡ 1. From the inequality C4(N+1)−C4(N)≥
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0,

(cK− cN)

{
Q4(N)

N−1

∑
n=0

WA(K/nT0)− [1−WA(K/NT0)]

}

+cM

{
[H((N +1)T0)−H(NT0)]

N−1

∑
n=0

WA(K/nT0)

−
N−1

∑
n=0

[H((n+1)T0)−H(nT0)]WA(K/nT0)

}
≥ cN , (20)

where

Q4(N)≡ WA(K/NT0)−WA(K/(N +1)T0)

WA(K/NT0)
.

Thus, if Q4(N) is strictly increasing and h(t) is increasing, or Q4(N) is increasing and
h(t) is strictly increasing, if a solution N∗4 to (20) exists, its minimum is unique.

4.2 Model 2
It is assumed that Z(t) = µAt +Bt , where Bt has a distribution Pr{Bt ≤ x} ≡WB(x).

Then, the probability that the unit does not fail in (0, t] is

Pr{Z(t)≤ K}= Pr{Bt ≤ K−µAt}=WB(K−µAt).

Thus, by replacing formally WA(K/t) in (17) with WB(K−µAt), the expected cost rate is

C5(T ) =
cK− (cK− cT )WB(K−µAT )+ cM

∫ T
0 WB(K−µAt)dH(t)

∫ T
0 WB(K−µAt)dt

. (21)

Let rB(t) be the failure rate of WB(t), i.e., rB(t) ≡ −W ′B(t)/WB(t). Differentiating
C5(T ) with respect to T and setting it equal to zero,

(cK− cT )

{
rB(K−µAT )

∫ T

0
WB(K−µAt)dt− [1−WB(K−µAT )]

}

+cM

∫ T

0
WB(K−µAt)[h(T )−h(t)]dt = cT . (22)

Thus, if rB(t) is strictly increasing and h(t) is increasing or rB(t) is increasing and h(t) is
strictly increasing, if a solution T ∗5 to (22) exists, it is unique.

5 Conclusions
We have discussed three kinds of replacement policies which are combined with ad-

ditive and independent damages. Expected cost rate models have been obtained by using
the techniques of cumulative processes and reliability theory. Optimal policies have been
derived analytically and could be compared numerically for specified parameters. How-
ever, the minimal repair cost cM may be a variable and some damage caused by damage
1 may be reduced by some maintenance using the opportunity time of minimal repair.
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