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Abstract In many practical problems, in particular in engineering design, the function form of
criteria is not given explicitly in terms of design variables. Given the value of design variables, under
this circumstance, the value of objective functions is obtained by real/computational experiments
such as structural analysis, fluidmechanic analysis, thermodynamic analysis, and so on. Usually,
these experiments are time consuming and expensive. One of recent trends in optimization is how to
treat these expensive criteria. In order to make the number of these experiments as few as possible,
optimization is performed in parallel with predicting the form of objective functions. This is called
sequential approximate optimization with meta-modeling. It has been observed that techniques of
computational intelligence can be effectively applied for this purpose. This talk will discuss several
issues in sequential approximate multiobjective optimization using computational intelligence.
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1 Introduction
In order to solve optimization problems with expensive objective/constraint functions,

we can apply effectively sequential approximate optimization technniques in which op-
timization is performed in parallel with predicting those expensive functions. Sequential
approximate optimization consists of two phases: 1) construction of a metamodel, and 2)
optimization for the metamodel. For the phase 1), there have been developed many kinds
of methods which are called metamodeling (in the sense of making “model of the model"),
surrogate modeling, response surface methods, etc. depending on research communities
[8, 11, 21]. For the phase 2), all kinds of optimization techniques may be available in
general. In many practical enginering design problems, however, due to complex non-
linearity and muli-modality metaheuristic methods such as genetic algorithms, particle
swarm optimization methods, ant colony optimization methods, and differential evolution
methods may be effectively applied. In the following, we discuss metamodeling in more
detail.

2 Metamodeling
The identification of function forms of objective functions and constraints functions

is referred to as “modeling" in practical problems. For the sake of simplicity, we consider
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throughout this section the following simple problem:

minimize f (xxx) over xxx ∈ X ⊂ Rn.

Then, the function f is also considered as a “model" of objectives. When it is difficult to
identify the function form of f , but when we can observe the value of f (xxx) for sampled
point xxx, we try to get an approximate function (or model) f̂ for f on the basis of obser-
vations (xxxi,yi) where yi = f (xxxi) and i = 1, . . . , `. This approximate function f̂ is called a
metamodel.

Now, our aim is to construct a good metamodel in the sense that

i) we can obtain an approximate optimal solution through the metamodel
with the property

| f̂ (x̂xx∗)− f (xxx∗)|5 ε1,

where x̂xx∗ and xxx∗ minimize f̂ and f , respectively, and ε1 is a given small
positive number,

ii) the total number of observations is as small as possible,
iii) the metamodel f̂ approximates well f entirely, if possible. Namely

|| f̂ − f ||5 ε2,

where ε2 is a given small positive number.

If our aim is merely to find the optimal solution minimizing f (xxx), then the metamodel
f̂ does not necessarily approximate well f entirely, but sufficiently well at least in a neigh-
borhood of the optimal solution xxx∗. Depending on practical problems, however, one may
want to see the global behavior of the model f . Therefore, the priority of iii) above is
behind the criteria i) and ii) which are crucial in general.

Metamodels can be constructed by plynomial regression, logistic regression, thin plate
splines, radial basis function networks, support vector regression (SVR) and so on. In this
paper, we review SVR briefly. Support Vector Machine (SVM) proposed by Vapnik et
al. in the middle of 90’s [1] is now recognized as an effective tool for machine learning
[3, 17, 18]. SVR is a version of SVM applied to regression problems, in which the ε
insensitive loss function is introduced [18]. It should be noted that the sparseness of
support vectors results from this ε insensitive loss function.

Denote the given sample data by (xxxi,yi) , i = 1, . . . , `. Define a metamodel f̂ on the
feature space Z mapped from the data space by some nonlinear map Φ as follows:

f̂ (zzz) = wwwT zzz+b,

and the linear ε insensitive loss function is defined by

Lε(zzz,y, f̂ ) = |y− f̂ (zzz)|ε = max(0, |y− f̂ (zzz)|− ε).

Taking into account this linear ε insensitive loss function, C-SVR allowing an error ξi

(ξ́i) for each data to some extent is defined as follows: For a given insensitivity parameter

2 The 9th International Symposium on Operations Research and Its Applications



ε ,

minimize
www,b,ξξξ ,ξ́ξξ

1
2
‖www‖2

2 +C

(
1
`

`

∑
i=1

(ξi + ξ́i)

)
(C−SVR)P

subject to
(
wwwT zzzi +b

)
− yi 5 ε +ξi, i = 1, . . . , `,

yi−
(
wwwT zzzi +b

)
5 ε + ξ́i, i = 1, . . . , `,

ε, ξi, ξ́i = 0,

where C is a trade-off parameter between the norm of www and ξi (ξ́i).
On the other hand, the authors proposed another version of SVR, called µ−SVR,

minimizing the maximum of error ξi as follows [15]: For a given insensitivity parameter
ε ,

minimize
www,b,ξ ,ξ́

1
2
‖www‖2

2 +µ(ξ + ξ́ ) (µ−SVR)P

subject to
(
wwwT zzzi +b

)
− yi 5 ε +ξ , i = 1, . . . , `,

yi−
(
wwwT zzzi +b

)
5 ε + ξ́ , i = 1, . . . , `,

ε, ξ , ξ́ = 0,

where µ is a trade-off parameter between the norm of www and ξ (ξ́ ).
The dual formulation to the problem (µ−SVR)P is given by

maximize
ααα,άαα

− 1
2

`

∑
i, j=1

(άi−αi)(ά j−α j)K (xxxi,xxx j) (µ−SVR)

+
`

∑
i=1

(άi−αi)yi− ε
`

∑
i=1

(άi +αi)

subject to
`

∑
i=1

(άi−αi) = 0,

`

∑
i=1

άi 5 µ,
`

∑
i=1

αi 5 µ,

άi = 0, αi = 0, i = 1, . . . , `.

where K(xxxi,xxx j) is a kernel satisfying K(xxxi,xxx j) =< Φ(xxxi),Φ(xxx j)>. The optimal formula
of metamodel is given by

f̂ (xxx) =
`

∑
i=1

(
ά∗i −α∗i

)
K(xxx,xxxi)+b∗

where ά∗i , α∗i are the solutions to (µ−SVR) and b∗ is the Lagrange multiplier to the
equality constraint in (µ−SVR). It has been observed that µ−SVR provides a good
performance robust against outliers with less support vectors [15].
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3 Incremental Design of Experiments
In sequential approximate optimization, one of most major issues is how to obtain

an approximate optimal solution by as less number of experiments as possible. To this
aim, we usually start with a relatively small number of experiments and add experiments
sequentially, if necessary. For design of incremental experiments, several optimality cri-
teria in the thoery of experimental design may be applied. However, it has been observed
that those optimality criteria such as the so-called alphabetical optimality (D-optimality,
E-optimality and etc.) depend on model formula. For example. if we adopt linear polyno-
mial models and D-optimality, then candidate samples to be added tend to be concentrated
in the area of edgepoints.

On the other hand, Jones et al. proposed to decide additional samples on the basis of
expected improvement in the efficient global optimization (EGO) [7]. The EGO is a kind
of global optimization methods using Bayesian approach (Bayesian global optimization)
[10, 23], and uses the Kriging model as a prediction method for unknown function.

3.1 Expected Improvement
The expected improvement is evaluated on the basis of the Kriging model as follows:

Consider the response y(xxx) as a realization of a random function, Y (xxx) such that

Y (xxx) = µ(xxx)+Z(xxx). (1)

Here, µ(xxx) is a global model and Z(xxx) reflecting a deviation from the global model is a
random function with zero mean and nonzero covariance given by

cov[Z(xxx),Z(xxx′)] = σ2R(xxx,xxx′) (2)

where R is the correlation between Z(xxx) and Z(xxx′). Usually, the stochastic process is
supposed to be stationary, which implies that the correlation R(xxx,xxx′) depends only on
xxx− xxx′, namely

R(xxx,xxx′) = R(xxx− xxx′). (3)

A commonly used example of such correlation functions is

R(xxx,xxx′) = exp[−
n

∑
i=1

θi|xi− x′i|2], (4)

where xi and x′i are i-th component of xxx and xxx′, respectively.
Although a linear regressrion model ∑k

j=1 µ j f j(xxx) can be applied as a global model
in (1) (universal Kriging), µ(xxx) = µ in which µ is unknown but constant is commonly
used in many cases (ordinary Kriging). In the ordinary Kriging, the best linear unbiased
predictor of y at an untried x can be given by

ŷ(xxx) = µ̂ + rrrT (xxx)RRR−1(yyy−111µ̂), (5)

where µ̂ = (111T RRR−1111)−1111T RRR−1yyy is the generalized least squares estimator of µ , rrr(xxx) is the
n× 1 vector of correlations R(xxx,xxxi) between Z at xxx and sampled points xxxi (i = 1, . . . , p),
RRR is an n× n correlation matrix with (i, j)-element defined by R(xxxi,xxx j) and 111 is a unity
vector whose components are all 1.
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The estimated value of the mean of the stochastic process, µ̂ , is given by

µ̂ =
111T RRR−1yyy
111T RRR−1111

. (6)

In this event, the variation σ2 is estimated by

σ̂2 =
(yyy−111µ̂)T RRR−1(yyy−111µ̂)

n
. (7)

The mean squared error of the predictor is estimated by

s2(xxx) = σ2[1− rrrT RRR−1rrr+
(1−111T RRR−1rrr)2

111T RRR−1111
]. (8)

In the following s =
√

s2(xxx) is called a standard error.
Using the above predictor on the basis of stochastic process model, Jones et al. applied

the expected improvemnet for adding a new sample point. Let f p
min = min{y1, . . . ,yp} be

the current best function value. They model the uncertainty at y(xxx) by treating it as the
realization of a normally distributed random variable Y with mean and standard deviation
given by the above predictor and its standard error.

For minimization cases, the improvement at xxx is I = [max( f p
min−Y, 0). Therefore, the

expected improvement is given by

E[I(xxx)] = E[max( f p
min−Y, 0)].

It has been shown that the above formula can be expanded as follows:

E(I) =

{
( f p

min− ŷ)Φ(
f p
min−ŷ

s )+ sφ( f p
min−ŷ

s ) if s < 0
0 if s = 0,

(9)

where φ is the standard normal density and Φ is the distribution function.
We can add a new sample point which maximizes the expected improvement. Al-

though Jones et al. proposed a method for maximizing the expected improvement by
using the branch and bound method, it is possible to select the best one among several
candidates which are generated randomly in the design variable space.

3.2 Distance-based Local and Global Information
One of most important tasks in optimization is to balance between exploration and

exploitation. The exploration is to search an optimal solution from a global viewpoint,
while the exploitation is to search an optimal solution in a good precision (namely, from
a local viewpoint). Therefore, it is important to design additional exepriments taking
into account global information and local information on the metamodel. It should be
noted that EGO using EI decides an additional sample by controling the weight on global
information and local information depnding on the situation.

Nakayama et al. [13] have suggested the method which gives both global information
for predicting the entire objective function and local information near the optimal point
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at the same time. In this method, two kinds of additional data are taken for relearning
the form of the objective function. One of them is selected from a neighborhood of the
current optimal point in order to add local information near the (estimated) optimal point.
The size of this neighborhood is controlled during the convergence process. The other
one is selected far away from the current optimal value in order to give a better prediction
of the form of the objective function. The former additional data gives more detailed
information near the current optimal point. The latter data prevents from converging to
local optimum point.

The neighborhood of the current optimal point is given by a square S, whose center
is the current optimal point, with the length of a side l. Let S0 be a square, whose center
is the current optimal point, with the fixed length of a side l0. The square S is shrinked
according to the number Cx of optimal points appeared continuously in S0 in the past.
That is,

l = l0×
1

Cx +1
. (10)

The first additional data is selected inside the square S randomly. The second additional
data is selected in an area, in which the existing learning data are sparse, outside the
square S. An area with sparsely existing data may be found as follows:

i) First, a certain number (Nrand) of data are generated randomly outside
the square S.

ii) Denote di j the distance from this random data pi (i= 1, . . . ,Nrand) to the
existing learning data q j ( j = 1, . . . ,N). Select the shortest k distances
d̃i j ( j = 1, . . . ,k) for each pi, and sum up these k distances, i.e., Di =

∑k
j=1 d̃i j.

iii) Take pt which maximizes {Di}(i=1,...,Nrand) as an additional data outside
S.

The algorithm using distance-based local and global information by [13] can be sum-
marized as follows:

Step 1. Predict the form of the objective function by some regression method on the basis
of the given training data.

Step 2. Estimate an optimal point for the predicted objective function by some optimiza-
tion method.

Step 3. Count the number of optimal points appeared continuously in the past in S0. This
number is represented by Cx.

Step 4. Terminate the iteration,
• if Cx is larger than or equal to the given C0

x a priori, or
• if the best value of the objective function obtained so far is identical

during the last certain number (C0
f ) of iterations.

Otherwise calculate l by the equation (10), and go to the next step.
Step 5. Select an additional data near the current optimal value, i.e., inside S.
Step 6. Select another additional data outside S in a place in which the density of the

training data is low as stated above.
Step 7. Go to Step 1.
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Example 1.
Consider a simple example given by

maximize
x1,x2

f (xxx) = 10exp
(
− (x1−10)2 +(x2−15)2

100

)
sinx1 (11)

subject to 0≤ x1 ≤ 15, 0≤ x2 ≤ 20.

This problem has an optimal (maximal) value f ∗ = 9.5585 at x∗1 = 7.8960 and x∗2 = 15.
Fig.1 shows the result at the 63 samples by EGO using EI. On the other hand, Fig.2 shows
the result at the 61 samples by RBF using distance-based global and local information.
One may see that both results are almost the same: although EI seems slightly better than
by distance-based global and local information, the calculation of EI takes more time.

x1x2

y

x1

x
2

x̂∗1 = 7.8964, x̂∗2 = 14.9819, f̂ ∗ = 9.5587

Figure 1: #data = 63 (final iteration) by EGO using EI

x1x2

y

x1

x
2

x̂∗1 = 7.8947, x̂∗2 = 15.1424, f̂ ∗ = 9.2880

Figure 2: #data = 61 (final iteration) by distance-based global and local information

4 Sequential Approximate Multiobjective Optimization
In multi-objective optimization, it is one of main issues how to obtain Pareto optimal

solutions, and how to choose one solution from many Pareto optimal solutions. To this
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end, the interactive optimization method [5, 9, 22], for example, aspiration level method
[16, 12], have been developed. Aspiration level method searches a solution by process-
ing the following two stages repeatedly: 1) solving auxiliary optimization problem to
obtain the closest Pareto optimal solution to a given aspiration level of decision maker,
and 2) revising her/his aspiration level by making the trade-off analysis. Conventional
interactive optimization methods are useful in particular in cases with many objective
functions, in which it is difficult to visualize Pareto frontier, and also to depict the trade-
off among many objective functions. In cases with two or three objective functions, on
the other hand, it may be the best way to depict Pareto frontier, because visualizing Pareto
frontier helps to grasp trade-off among objective functions. For that purpose, evolution-
ary methods such as genetic algorithm (GA) have been effectively applied for solving a
multi-objective optimization problem: so called evolutionary multi-objective optimization
(EMO) methods have been proposed for generating Pareto optimal solutions [4, 2]. How-
ever, EMO has some problems: i) it is difficult to visualize Pareto frontiers in cases with
many objective functions, ii) many function evaluations are usually needed for generat-
ing the whole Pareto frontier. Considering the number of function evaluations, it would
be rather reasonable to generate not the whole Pareto frontier, but a necessary part of it
in which the decision maker may be interested. To this aim, we introduce some meth-
ods combining aspiration level approach and computational intelligence method in this
section.

A multi-objective optimization problem (MOP) can be formulated as follows:

minimize
xxx

fff (xxx) = ( f1(xxx), . . . , fr(xxx))T (MOP)

subject to xxx ∈ X =
{

xxx ∈ Rn | g j(xxx)5 0, j = 1, . . . ,m
}
,

where X denotes the set of all feasible solutions in the design variable space.
To begin with, we summarize the method for sequential approximate multi-objective

optimization (shortly, SAMO) using satisficing trade-off method proposed by [16] as fol-
lows:

Step 1. Calculate the real values of objective functions fff (xxx1), . . . , fff (xxx`) for given sample
points xxx1, . . . ,xxx`.

Step 2. Approximate each objective function fk(xxx), k = 1, . . . ,r, by using some regres-
sion method on the basis of training data set (xxxi, fk(xxxi)) , i = 1, . . . , `. An optimal
solution/value to approximate objective function f̂ff (xxx) is called an approximate op-
timal solution/value.

Step 3. Find an approximate optimal solution xxxa closest to the given aspiration level fff
by solving the following problem (AP) of satisficing trade-off method:

minimize
xxx,z

z+α
r

∑
i=1

wi f̂i(xxx) (AP)

subject to wi
(

f̂i(xxx)− f i
)
5 z, i = 1, . . . ,r,

xxx ∈ X ,

where α is a sufficiently small positive number, for example 10−6, wi =
1/( f i− f ∗i ) and f ∗i is an ideal value.
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Furthermore, generate approximate Pareto optimal solutions xxx1, . . . ,xxxp to f̂ff by us-
ing EMO for approximating the whole set of Pareto solutions and for deciding the
second additional samples which will be stated in Step 5 below.

Step 4. Stop the iteration if a certain stop condition is satisfied. Otherwise, go to the next
step. The stop condition is given by, for example, the limitation of the number of
sample points, the count of no-changing approximate solution obtained in the Step
3, and so on.

Step 5. Choose additional sample points for relearning, and go to Step 1.

It is important to improve the prediction ability for function approximation in order to
find an approximate solution closer to the exact one with as small number of sample data
as possible. To this aim, starting with relatively few initial samples, we add new samples
step by step, if necessary. Here, we introduce one of the ways how to choose additional
sample points proposed by Yun-Yoon-Nakayama [20].

(i) First, one additional sample point is added as the solution xxxa closest
to the given aspiration level which is found in step 3. This is for ap-
proximating well a neighborhood of Pareto optimal solution closest to
the aspiration level, which enables to make easily the trade-off analysis
among objective functions. Here, the additional point xxxa is considered
as a local information of Pareto frontier, because xxxa can provide the
information around the closest Pareto optimal solution to the aspiration
level.

(ii) Another additional sample point is for depicting the configuration of
Pareto frontier. This is for giving a rough information of the whole
Pareto frontier, and we call this a global information of Pareto frontier
in contrast with the above local information.

Stage 1. Evaluate the rank Ri for each sample point xxxi, i= 1, . . . , `
by the ranking method of Goldberg [6].

Stage 2. Approximate a ranking function R̂(xxx) on the basis of
training data set (xxxi,Ri) , i= 1, . . . , ` by some regression method.

Stage 3. Calculate the values of ranking function R̂(xxx) for the ap-
proximate Pareto optimal solutions xxx j, j = 1, . . . , p generated
in step 3.

Stage 4. Among them, select a point with the best rank

xxxb = arg min
j=1,...,p

R̂(xxx j).

Example 2. (Case 1)
Consider the following problem with two design variables and two objective func-

tions:

minimize
x1,x2

f1(xxx) = x1 (Ex-1)

f2(xxx) = 1+ x2
2− x1−0.1sin(5πx1)

subject to 0 5 x1 5 1, −2 5 x2 5 2.
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Starting with initial sample 10 points generated randomly, we stop the iteration after
15 additional learning. We approximate each objective function by using µ−SVR with
gauss kernel function. Fig. 3 shows the results with 40 sample points after 15 additional
learning, in which one may see that the obtained approximate Pareto optimal solutions
are almost the same as the exact ones.

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f 2

 

 

ideal point
aspiration level

(a) approximate value closest to
aspiration level

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f 2

 

 

ideal point
aspiration level

(b) approximate Pareto frontier

Figure 3: # data = 40 sample pts (after 15 additional learning) (Ex-1) : case 1

Example 2. (Case 2)
Note that the second additional sample at Step 5 seems to provide a local information

in the sense that it is for generating a better approximation of the whole Pareto frontier.
Indeed, the additional samples in the space of design variables xxx are concentrated in the
neighborhood of Pareto optimal solutions. From a viewpoint of generating a better ap-
proximation of each objective function, further sample points for global information may
be needed. As the third additional sample point, we recommend to add a point in a sparse
area of existing samples. This is performed by a similar way as the distance based lo-
cal and global information method. Fig. 4 shows the result obtained by this method.
One may see that each objective function is approximated well enough and that a well
approximated Pareto frontier is generated.

5 Concluding Remarks
The most prominent feature in SAMO described above is that combining the aspi-

ration level method and EMO, it is possible to find the most interesting part of Pareto
frontier for the decision maker as well as to grasp the configuration of the whole Pareto
frontier. In particular in cases with many objective functions, since it is difficult and ex-
pensive to visualize the whole Pareto frontier, it becomes effective to restrict the search
region to the most interesting part of Pareto frontier. An example of this approach can be
seen in [15]. With further devices peculiar to given problems, the effectiveness of SAMO
has been observed in a wide range of engineering problems [15].
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Figure 4: # data = 40 (after 10 additional learning) : case 2
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