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Abstract Life sciences are witnessing an interdisciplinary research induced shift in paradigm
from the traditional characterization of individual molecules towards an understanding of interac-
tive pathways and networks. Accordingly, it is now becoming widely accepted that an engineering
science approach needs to be integrated with wet lab life science research such that the role of
genes, proteins, metabolites and cells can be understood and defined through their interactions. The
principal goal of systems biology is to understand the design principle of emergent properties in
complex biological phenomena. We can think of a cell as made of several superimposed molecular
interaction networks such as metabolic networks, signal transduction networks, and gene transcrip-
tion networks. One good way of understanding such large scale complex networks is to investigate
their basic building blocks (’network motifs’) and corresponding cellular functioning (’emergent
property’). In this presentation, dynamical analysis of network motifs in relation to various bio-
logical emergent properties is to be used as a vehicle for discussion on current systems biological
challenges.
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Life sciences witness a shift of paradigm from traditional characterization of indi-
vidual molecules towards an understanding of interactive pathways and networks. The
role of genes, proteins, metabolites and cells can be understood and defined through their
interactions and it is this very focus on intra- and inter-cellular dynamics that Systems
Biology concerns (Wolkenhauer et al., 2003).

Cellular processes are driven by various types of molecules such as genes, proteins,
and metabolites. The regulation networks, of which the molecules form a part, are often
highly inter-connected in order to carry out some coordinated cell function, and within
them there are frequently observed patterns that are described as ’network motifs’.

One of the interesting network motifs is the incoherent feed-forward loop (FFL) which
has two oppositely signed paths from a single input to a single output. At first glance,
the structure of this incoherent FFL seems to be very inefficient as the input signal both
activates and inhibits the output. However, the incoherent FFL is frequently found in
many organisms.
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The behaviour of incoherent FFLs is biphasic and can be further classified into two
types: time- and dose-dependent. Time-dependent biphasic behaviour can be thought of
as a ’pulse generator’, since an input generates an output response that initially increases
but subsequently decreases as time evolves, even if the input is sustained. The time-
dependent biphasic response is required to achieve a transient, rather than a sustained,
activation. This is particularly important to precisely control the cell fate decision. Dose-
dependent biphasic behaviours can be thought of as ’band-pass filters’ since the steady-
state output response initially increases and subsequently decreases with increasing input
dose. The dose-dependent biphasic response is required when an output responds only to
a certain range of input dose strength.

Although these two different types of biphasic responses are required for different
biological purposes, they are implemented by the same incoherent FFL structure. In-
triguingly, there are many incoherent FFLs which have different biphasic behaviours. A
question then arises whether there is any reason why the structurally identical FFLs per-
form such different functional roles? To answer this question, we have carried out com-
putational studies based on a simple mathematical model of the incoherent FFL, which
captures the essential dynamics. In particular, we have investigated the optimal kinetic
parameters that maximize the time- and dose-dependent biphasic behaviours using a ge-
netic algorithm (GA). Through extensive simulation studies, using optimal parameters
obtained from the GA, we have found that the dynamics of the two types of incoherent
FFLs are mutually exclusive. From these computational results and previous experimental
observations, we hypothesize that an incoherent FFL can exhibit different dynamical char-
acteristics depending on whether it has been evolved to have a time- or dose-dependent
biphasic response. We further postulate that various types of incoherent FFLs might have
been optimally designed to perform their own functions under different cellular contexts
(Kim et al., 2008).

Another interesting network motif is a feedback loop. Interestingly, such feedback
loops are often found as a coupled structure rather than a single isolated form in various
cellular circuits. There have been some studies on the coupled feedback loops (CFLs)
for particular cases, but no unified investigation has been reported. The question is about
the advantages of such CFLs that must have been evolved to achieve specific regula-
tory functions in cellular circuits. To answer this question, we first explore the dynamic
characteristics of single feedback loops and then study all possible combinations of such
single feedback loops. We can classify the coupled structures of feedback loops into three
basic modules: PP (a positive feedback loop + a positive feedback loop), PN (a posi-
tive feedback loop + a negative feedback loop), and NN (a negative feedback loop + a
negative feedback loop). We can consider any coupled feedback circuit as a combina-
tion of these basic modules. For simplicity, we consider those CFLs sharing only one
node, but the results can be extended to any topology without loss of generality. Through
extensive computer simulations and integrative analysis of all scattered previous experi-
mental results, we discovered that the CFLs have their own roles which single feedback
loops cannot achieve. In particular, we have found that PP enhances signal amplification
and bistability, NN realizes enhanced homeostasis, and PN guarantees reliable decision
by properly modulating signal responses and effectively dealing with noises (Shin et al.,
2008; Kim et al., 2008b; Kim et al., 2008c; Goh et al, 2008; Kwon and Cho, 2007b; Kim
et al., 2007a; Kim et al., 2007b).
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Robustness is a key property of biological networks that enables to maintain their
functioning against external and internal perturbations. This feature has been ubiqui-
tously observed in various biological examples. Recent studies showed that robustness
and fragility of biological networks are correlated with each other, but the underlying de-
sign principle for such a phenomenon is still largely unknown. So, we have investigated
the robustness and fragility of biological networks through computational experiments on
network models with a particular focus on the role of feedback loops. To do this, we
considered the robustness of a network defined as the capability of maintaining the stable
equilibrium state against perturbations of an initial state. In this regard, the robustness
can be measured by a probability with which the equilibrium state is maintained against
perturbations in its initial state. Then, we can measure the fragility by a probability with
which the robustness can be lost by unexpected mutations.

Through extensive computational experiments, we found that robust networks tend
to have a larger number of positive feedback loops and a smaller number of negative
feedback loops. Moreover, we found that the nodes of a robust network subject to per-
turbations are mostly involved with a smaller number of feedback loops compared with
the other nodes not subject to such perturbations. This implies that there is a fundamental
topological difference among the network nodes depending on their history of perturba-
tions. Such a topological difference results in the fragility against unexpected mutations
at the nodes not previously exposed to any perturbation (Kwon and Cho, 2008a; Kwon
and Cho, 2008b; Kwon and Cho, 2007a; Kwon et al., 2007).

In summary, I conclude that the topological property of a biomolecular regulatory
network characterized by incoherent FFLs and multiple CFLs is crucial in determining
the emergent properties of various cellular dynamics.
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