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Abstract Signal transduction pathways play important roles in various biological processes such
as cell cycle, apoptosis, proliferation, differentiation and responses to the external stimuli. Efficient
computational methods are of great demands to map signaling pathways systematically based on the
interactome and microarray data in the post-genome era. In this study, we propose a novel approach
to infer the pathways based on the network flow well studied in the operation research. We define
a potentiality variable for each protein to denote the extent to which it belongs to the objective
pathway. And the capacity on each edge is not a constant but a function of the potentiality variables
of the corresponding two proteins. The total potentiality of all proteins is given an upper bound.
The approach is formulated to a linear programming model and solved by the simplex method.
Experiments on the yeast sporulation data suggest this novel approach recreated successfully the
backbone of the MAPK signaling pathway with a low upper bound of the total potentiality. By
increasing the upper bound, the approach successfully predicted all the members of the MAPK
pathway responding to the pheromone. It also included the cross-talks between the MAPK pathway
and the pathway controlling cell cycle which play important roles in the yeast sporulation. This
simple but effective approach provides a very useful tool facilitating the biologists to mine the
biological insight from the genomic data.
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1 Introduction
Signal transduction plays an important role in biological systems. It forms the basis of

various biological phenomena, e.g. cell cycle, apoptosis, proliferation, differentiation and
responses to the external stimuli. However, mapping the signal transduction pathways is
very hard by the traditional biochemical methods. They are quite labor-intensive and time-
consuming. With the large-scale genomic datasets available, especially the interactome
and microarray data, computational methods become more and more powerful in mapping
the signaling pathways transferring signals from a source to its targets.
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A few methods have been proposed to infer the pathways, e.g. the Color Coding
Method [8], Netsearch [10] and the mixed integer linear programming model [12, 13].
These methods use different heuristics to predict the pathways. The Color Coding method
assigns a value to each interaction by using logistic regression based on gene expression
and interaction data. It searches the whole network to find the pathway with the highest
score, which is defined as the product of the values assigned to its interactions. Netsearch
provides a statistical method to score the paths of a certain length based on clustering
of gene expression data. These two methods require predefining the pathway structure
and pathway length. However, it is hard to get this type of information in advance for
unknown pathways. The mixed integer linear programming model proposed by Zhao et
al. does not require predefining the pathway structure or length. It searches the network
to find a subnetwork with the highest weight sum that connects the source with the target.
The weight of each edge is assigned based on the confidence scores of the interactions or
the correlation coefficients of genes from gene expression data. The improved version of
this method incorporated the flow concept to guarantee the connectivity and to control the
size of the pathway [12].

In nature, signaling pathways are information flows. Network flow can simulate the
principles of signaling pathways, not only a tool to guarantee the connectivity. In this
study, we transform the interactome data into an edge-weighted network in which each
edge is weighted by the absolute value of the Pearson correlation coefficient of the gene
expression profiles of the two node proteins. Given the source and the target, the signal-
ing pathway inference problem is treated as a maximum-flow problem. Maximizing the
flow amount from the source to the target is reasonable and in accord with the biological
law "survival of the fittest" because the efficiency in the signal transmission can award a
survival advantage to the organisms. We define a potentiality variable for each protein to
denote the extent to which the protein belongs to the pathway, and define the capacity of
each edge as the product of the edge weight and the sum of the potentiality of the corre-
sponding two proteins. This is different from the well-studied maximum-flow problem in
which the capacity of each edge is constant. An upper bound is given to the total poten-
tiality of all the proteins, which provides a parameter for the biological users to calibrate
the model. This model is formulated to a pure linear programming problem and solved
by the simplex method.

Compared to the previous methods, our approach is clearer and simpler conceptually.
Because linear programming problems can be solved very efficiently, our approach is
also expeditious computationally. Experiments on the yeast sporulation expression data
showed the effectiveness of our method. The backbone of the MAPK pathway deposited
in the KEGG database [6] was recreated successfully with a low upper bound of the total
potentiality. And increasing the upper bound got more relevant members of the pathway.
The cross-talks between the MAPK pathway and the pathway controlling cell cycle were
also indicated, which is insightful because cell cycle must be arrested during the yeast
sporulation.

2 Method
Our method aims to infer the pathways from the protein-protein interaction network

and gene expression data. The protein-protein interaction network depicts the static topo-
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logical structure of the interactome. Gene expression data contain the dynamic informa-
tion of cellular responses to various conditions. Based on the gene expression data, the
protein-protein network is transformed into an edge-weighted network by calculating the
absolute values of the Pearson correlation coefficients for each edge.

Let G(V,E,W ) denote the edge-weighted network, where V is the vertex set, E is the
edge set and W is the weight set. ei j ∈ E denotes that i ∈V interacts with j ∈V . wi j ∈W
denotes the weight on the edge ei j. Based on the edge-weighted network, the pathway-
inference problem is transformed into a maximum-flow problem. The problem can be
written as a pure linear programming model as follows:

max∑
j

f jt (1)

Subject to

fi j ≤ wi j(pi + p j) ∀ei j ∈ E (2)
− fi j ≤ wi j(pi + p j ∀ei j ∈ E (3)

∑
j

fi j = 0 ∀i ∈V except s, t (4)

∑
j

fs j = ∑
k

fkt (5)

fi j =− f ji ∀ei j ∈ E (6)
pi ≥ 0 ∀i ∈V (7)
pi ≤ 1 ∀i ∈V (8)

∑
i

pi ≤ c (9)

where fi j and pi are variables and c is a constant. s is the source and t is the target.
fi j denotes the flow from i to j. pi is the potentiality variable of i. The objective is to
maximize the flow the target receives, given by (1). (2) and (3) define the capacity of
each edge. (4) and (5) confine that the net flow of each mediate node is zero and that
the amount of the flow the target receives equals to the amount the source sends out. (6)
restricts that the net flow from i to j must be the opposite of the net flow from j to i.
(7) and (8) restrain the potentiality variables between zero and one. (9) gives the upper
bound of the total potentiality c. The linear programming model is solved by the simplex
method.

When the linear programming model is solved, edges through which the flow amount
is not larger than zero are filtered. The remaining edges constitute the pathway from the
source to the target.

3 Results
The sporulation is an important developmental process through which diploid cells of

the budding yeast produce haploid cells. The sporulation and the normal cell cycle are
two mutually exclusive developmental processes. The MAPK signaling pathways play
key roles in the switch between these two developmental processes [5]. Time-series DNA
microarrays have been applied to detect the changes of gene expressions during the yeast
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sporulation [4]. We integrated the gene expression data of yeast during the sporulation
and the protein-protein interaction data in DIP [11] to infer the active MAPK signaling
pathways during yeast sporulation by our method. The linear programming model was
solved by the linprog function in Matlab on a 1.86 GHz Pentium 4 PC.

We downloaded the gene expression data from the NCBI GEO database with the
accession number GDS104 [4, 3]. It contains the gene expression data of seven time
points during the sporulation (0, 30min, 2hrs, 5hrs, 7hrs, 9hrs and 11hrs). The DIP Core
dataset of the yeast protein-protein interactions was downloaded on July 8th, 2008. Only
the physical interactions are selected to infer the MAPK signaling pathways. Totally 4770
interactions of 2334 proteins were selected.

During the sporulation of yeasts, the membrane protein STE3 senses the pheromone
MATa outside the cells and initializes the MAPK signaling pathways. The signal is trans-
mitted into the nucleus and received by the transcription factor STE12 regulating the
expressions of a series of executive genes. In this process, the receptor STE3 activates the
heterotrimetric G protein GPA1+STE4+STE18, transmits the signal to STE20 through
CDC42, and then triggers the MAPK cascade [2]. The MAPK cascade consists of MAP-
KKK STE11, MAPKK STE7 and MAPKs FUS3 and KSS1. STE11 phosphorylates and
activates STE7 on two residues conserved on all MAPKKs. STE7 phosphorylates Fus3
and KSS1 in turn. STE5 acts as a scaffold to get the MAPKKK, MAPKK and MAPKs
together, facilitating the sequential phosphorylation (Figure 1).

We applied our approach to search the pathway from STE3 to STE12. With the upper
bound of the total potentiality being one, the backbone of the MAPK signaling pathway
was recreated successfully (Figure 2). In the predicted pathway in Figure 2, STE3 first
interacts with AKR1 which then interacts with STE4 and STE5. STE4 is a subunit of
the heterotrimetric G protein. The MAPKKK (STE11), MAPKK (STE7) and one MAPK
(KSS1) were all identified. AKR1 was included in the predicted pathway because STE3
has only one interactor (AKR1) in the interaction dataset.

The size of the predicted pathways increases when the upper bound of the total po-
tentiality increases from one to six (Figure 3). All the MAPK pathway members except
STE18 and MSG5 (15/17) are included in the predicted pathway where the upper bound
is six (Figure 4). STE18 and MSG5 are not included because these two proteins are not
included in the interaction dataset.

Besides the genes involved in the MAPK signaling pathway, the predicted pathway in
Figure 4 also includes 23 other proteins. The functional enrichment analysis by BinGO
[7], a plug-in of Cytoscape [9], shows that thirteen out of the 23 proteins involve in the
cell division (p = 1.0219e− 8). Four out of the remaining ten proteins are annotated as
"response to pheromone" in the Gene Ontology database [1]. Thus, these proteins involve
in the MAPK-related pathways that act in concert with the MAPK signaling pathway to
promote the yeast sporulation. This is insightful and suggests that our method can identify
the cross-talks between the related pathways.

4 Discussions and Conclusion
In nature, signal transduction pathways are ordered sequences of biochemical reac-

tions. The components include signaling molecules (or ligands), cell-surface receptors,
intracellular receptors, second messenger molecules, nuclear factors and other proteins.
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Figure 1: The MAPK signaling pathway
responding to the pheromone MATa in
KEGG

Figure 2: The backbone of the yeast
MAPK signaling pathway recreated by
our approach (c = 1)

Many ligands and the second messengers are not proteins. The information of signaling
pathway provided by protein-protein interaction data is limited and partial. The current
protein-protein interaction data are incomplete and noisy compared to the true interac-
tome. This influences the accuracy of the predictions. Signal transduction is carried out
by enzymes which are regulated through their abundance and activity. Microarray data
only measured the approximate abundance of enzymes. Proteomic data will provide ex-
act measures of both the abundance and the activity. Integration with proteomic data will
improve the accuracy of predictions greatly when the data are available.

Despite those difficulties and defects, computational predicting the signaling path-
ways based on the interactome and expression data has achieved an appreciable accuracy.
Combination with the traditional experimental methods will accelerate the progression of
biomedical research greatly. In this study, we propose a conceptually clearer and simpler
method to infer the signaling pathways based on the network flow. It is implemented as a
pure linear programming model and is expeditious computationally. The upper bound of
the total potentiality provides a valid parameter facilitating the biological users applying
the approach to mine the publicly available genomic data to promote the signaling path-
way mapping. With more types of genomic and proteomic data available, the approach
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Figure 3: The size of the predicted pathways varies with the upper bound of the total
potentiality. A, the number of nodes vs the upper bound; B, the number of edges vs the
upper bound.

Figure 4: The predicted pathway including all the MAPK pathway members except
STE18 and MSG5 (c = 6). Nodes in the left circle are all the MAPK pathway mem-
bers. Nodes in the right circle involve the MAPK-related pathways regulating the cell
division.
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should evolve to utilize more information to improve the predicting accuracy.
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