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Abstract Research on community structure detection in complex networks has attracted a great
deal of attention in recent years. In this paper we propose a random iterative algorithm to uncover
meaningful communities. The algorithm starts with initial population creation. Each individual
of the population is encoded with the community identifiers of the nodes in the network, so it is
a potential solution of the community structure of the network considered. Nodes are randomly
assigned into communities at the beginning of the algorithm. At each iteration some nodes are
randomly selected, their community identifiers are reassigned according to the modularity function
and the measure of information discrepancy based on the shortest path profiles of nodes in the
network. In the end, a proper community structure can be detected by the identifiers encoded in
the individual with the largest modularity. The algorithm does not need any prior knowledge about
the number of communities and can give an appropriate number by maximizing the modularity
function. The computational results of the method on real-world networks confirm its capability.

Keywords Community detection; random iteration; complex networks

1 Introduction
Many real-world systems can be represented by networks composed of vertices and

edges, such as the Internet [1], social networks [2, 3], biological networks [4, 5], the food
webs [6] and et al. For complex networks, apart from small-world property, power-law
degree distribution and network transitivity, one common typical property is the com-
munity structure, i.e. the division of networks into groups (also called clusters) having
dense intra-connections, and sparse inter-connections. Detecting this community struc-
ture is fundamental for uncovering the links between structure and function in complex
networks, and has a lot of applications in many different disciplines such as biology and
social sciences.

Identifying community structure in complex networks has been receiving a great deal
of attention and many techniques have been proposed for this purpose in recent years. For
example, the hierarchical (agglomerative and divisive) clustering method [2, 7, 8], clique
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percolation [9, 10], spectral algorithm [11, 12, 13], Potts model [14, 15, 16], and so on.
A huge number of methods have been recently reviewed and evaluated in Refs. [17, 18].

Among all the techniques for detecting communities, there are a great many algo-
rithms proposed based on maximizing a modularity Q, which is introduced by Newman
and Girvan [19] and has been broadly used as a valid measure for community structure.
Specifically, the modularity function Q is defined as

Q =
k

∑
c=1

[
lc
L
−
(

dc

2L

)2
]

(1)

where the sum is over the k communities of the partition, lc is the number of links inside
community c, L is the total number of links in the network, and dc is the total degree
of the nodes in community c. The modularity function provides a way to determine if a
partition is valid to decipher the community structure in a network. Maximization of the
modularity function Q over all the possible partitions of a network is usually an effective
method [19, 20, 21]. So based on the modularity function, many methods have been
developed [13, 22, 23, 24, 25].

As a matter of fact, finding an exact optimal solution for partitioning a network to
detect the community structure is believed to be an NP-complete problem and therefore
difficult to solve. Many existing methods are computationally exhaustive especially for
large networks. In recent years a kind of approach has been proposed based on genetic
algorithm or evolutionary computation which provides promising algorithms for solving
NP-hard problems. They provide good (acceptable) solutions for community detection
in complex networks in a reduced amount of time [26, 27]. The main drawback of these
evolutionary techniques is the parameter problem, that is, there are too many parameters
needing to be determined in the practical use, besides the population size, the iteration
count, some others are the crossover proportion, the mutation rate, the threshold for clean-
up and when to start clean-up [26]. This heavily limits its further applications.

In this study we propose a random iterative algorithm to uncover meaningful commu-
nity structure in complex networks. First of all, we introduce the shortest path profile of
each node which can characterize its overall connection information in a network, as well
as the measure of information discrepancy (MID) [28] to measure the distance of any two
nodes in the network. The algorithm starts with initial population creation. Each individ-
ual of the population is encoded with the community identifiers of the nodes, so it is a
potential solution of the community structure of the network considered. And nodes are
randomly assigned into communities at the beginning of the algorithm. At each iteration
some nodes are randomly selected, their community identifiers are reassigned according
to the MID measure and the Q value. In the end, a proper community structure can be
detected by the identifiers encoded in the individual with the largest modularity Q. The
algorithm does not need any prior knowledge about the number of communities and can
give an appropriate number by maximizing Q. Comparative to the genetic algorithm [26],
the method proposed here need not the operations such as crossover, mutation and clean-
up, so there are no many parameters to be determined here, this increases its feasibility
in practical use. The computational results of the method on real-world networks confirm
its capability.
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2 Shortest path profile and the measure of information
discrepancy

For each node i of a given connected network with n nodes, we can get an n-dimensional
vector Di = (di1,di2, . . . ,din), where di j denotes the shortest path from node i to node j
(i, j = 1, . . . ,n). By normalizing Di, we can obtain a new vector Pi = (pi1, pi2, . . . , pin),
which satisfies ∑n

j=1 pi j = 1, i = 1, . . . ,n, and is referred to as the shortest path (SP) pro-
file of node i here. The SP profile well deciphers relationship of one node with the whole
network. A direct idea is that if two nodes i and j have similar SP profiles, they must have
very close link relationship.

To measure the similarity of SP profiles of any two nodes, the MID measure proposed
by Fang [28] is used, that is

B(P1,P2) =
2

∑
i=1

n

∑
j=1

pi j ⋅ ln
pi j

2

∑
i=1

pi j/s

(2)

where Pi = (pi1, pi2, ⋅ ⋅ ⋅ , pin) is an n-dimensional distribution and now represents the SP
profile of node i, and 0 ⋅ ln 0

0 is defined as 0 as in the Kullback-Leiber entropy [29]. The
measure B has a close relationship with Shannon entropy and has many good properties,
such as non-negativity, identity, symmetry, boundedness, uniform continuity, monotonic-
ity, maximum, convexity and so on [30]. As a matter of fact, the MID measure has some
satisfactory applications in bioinformatics and other fields [31, 32]. Moreover, the ad-
vantage of the MID measure over the traditional Euclidean distance for measuring the
similarity of nodes based on SP profiles has been discussed in [25].

3 The new random iterative algorithm
The algorithm is carried out by iteration. At every iteration the search process is oper-

ated on a population, each individual of which encodes a potential solution of the commu-
nity structure of the network considered. So our algorithm starts with initial population
creation. For a network with n nodes, each individual of the population has n elements,
each of which represents the community identifier (CommId) of the corresponding node.
And nodes are randomly assigned into communities at the beginning of the algorithm.
Then at each iteration the modularity function Q is calculated for each individual, and
the community identifiers of some randomly selected nodes are adjusted according to the
MID measure and the Q value. In the end, the proper community structure can be obtained
by the identifiers encoded in the individual with the largest modularity Q.

In detail, given an n-node network G(V,E) consisting of the node set V and the edge
set E, the iterative procedure of our algorithm works as follows:

1. For the first iteration, set s = 1.
2. An initial population with predetermined size Np is created: H = {H1, ⋅ ⋅ ⋅ ,HNp}.

Each individual Hi is an n-dimensional vector Hi = (hi1, ⋅ ⋅ ⋅ ,hin), where hi j denotes
the community identifier of node j in individual i (i = 1, ⋅ ⋅ ⋅ ,Np, j = 1, ⋅ ⋅ ⋅ ,n). Ini-
tially, each hi j is randomly assigned a value between 1 and n.
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3. For i = 2, ⋅ ⋅ ⋅ ,Np, some predetermined proportional nodes are randomly selected
from the individual Hi. For example, nr nodes, where nr is an integer, are denoted
by Vi = {vi1, ⋅ ⋅ ⋅ ,vinr}. For each vi j (i.e., node j of Hi), we calculate its degree
deg j = ∑n

k=1 a jk, where [a jk]n×n is the adjacency matrix, that is, a jk = 1 if ( j,k)∈ E
and otherwise a jk = 0.

(a) If deg j = 1, set CommId(vi j) =CommId(v j0), where v j0 is the unique neigh-
bor of node vi j in the network G(V,E).

(b) If deg j = 2, let v j1 and v j2 be the two neighbors of vi j in G(V,E).
i. If deg j1

≥ deg j2
, set CommId(vi j) = CommId(v j1) and CommId(v j2) =

CommId(v j1).
ii. If deg j1

< deg j2
, set CommId(vi j) = CommId(v j2) and CommId(v j1) =

CommId(v j2).
(c) If deg j ≥ 3, let S j denote the set of all neighbors of node vi j in the network

G(V,E), i.e., S j = {v j1 , ⋅ ⋅ ⋅ ,v jm} (m ≥ 3). According to (2) we calculate the
MID measure between vi j and its every neighbor : B j, k = B(Pj,Pjk) where
Pj and Pjk represent the SP profiles of nodes vi j and v jk , respectively (k =
1, ⋅ ⋅ ⋅ ,m). Let B̄ j = (1/m)∑m

k=1 B j, k.
For k = 1, ⋅ ⋅ ⋅ ,m, if B j, k ≤ γB̄ j (γ is a positive parameter):

i. and if deg j ≥ deg jk
, set CommId(v jk) =CommId(vi j);

ii. else if deg j < deg jk
, set CommId(vi j) =CommId(v jk).

4. For i = 1, ⋅ ⋅ ⋅ ,Np, the modularity Q in (1) is calculated for each Hi, which can be
used to evaluated the community structure encoded in it. We denote these values
by Qs,1, ⋅ ⋅ ⋅ ,Qs,Np , respectively. Then reorder the individuals {Hi}1≤i≤Np in the
population H according to Qs,i from large to small.

5. Set s := s+ 1, return to step 3, until Qs,1 −Qs−80,1 < 0.005, the iteration stops.
And the community structure of the network G(V,E) can be detected through the
community identifiers encoded in the individual H1 at the current iteration.

The iterative procedure can be easily implemented with Matlab [33] programming.
Both the source code and the data for testing can be obtained from the authors.

4 Experiments
We test the performance of the proposed algorithm here by applying it to several well-

studied real-world networks. In our experiments we use Np = 50 as the population size.
For the value of the parameter γ in (c) of step 3, generally we choose one number from
{1.0,1.1, ⋅ ⋅ ⋅ ,1.5}, depending on that which can make the algorithm get a larger Q value.
And in the iteration nr = [n/8] nodes are randomly selected every time to be reassigned
community identifiers, where n is the size of the network considered and [x] means the
maximal integer no more than x. It is the randomness of the selection of the nodes that
different runs may bring forth different results. In the following the best one is reported
through about 10 runs for each experiment.
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Figure 1: The community structure of journal index network obtained by the proposed
method.

4.1 The journal index network
The journal index network constructed by Rosvall and Bergstrom [34] consists of 40

journals as nodes from four different fields: physics, chemistry, biology and ecology, and
189 links connecting nodes if at least one article from one journal cites an article in the
other journal during 2004. 10 journals with the highest impact factor in the four different
fields were selected.

Exactly the same communities as the actual partition are obtained using our algorithm
with γ = 1.1, where Q = 0.4783 (Figure 1). Furthermore, when γ = 1.2 is used 3 groups
are obtained with Q = 0.4197 where physical and chemical journals are incorporated into
a single module. So do ecological and biological journals when γ takes a value among
1.3, . . . , 1.6 and 1.7, therefore we get 2 groups at this time with Q = 0.3981. But when γ
is a little small or too large, unsatisfactory results occur. At this situation either a single
journal (node) is split from its original field or parts of different fields are combined to
form a group.

4.2 The scientific collaboration network
The scientific collaboration network collected by Girvan and Newman [7] is a widely

used test example for methods of detecting communities in complex networks [7, 12].
This network consists of 118 nodes (scientists) and 200 edges.

Different from the journal index network ((Figure 1)), this network is a little sparse in
which more than 20 nodes with only degree 1, so it looks a little like stelliform subgraphs
for some parts of the network because some nodes have very high degrees therein. Now
the algorithm is used with γ = 1.5 and we get 7 groups where Q= 0.7456. Figure 2 shows
the detected community structure which is visually very reasonable.

4.3 The football team network
The third real network we have tested is the college football network of the United

States, which represents the game schedule of the 2000 season of Division I of the US
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Figure 2: The community structure of scientific collaboration network obtained by our
method.

college football league. The nodes in the network represent the 115 teams, while the links
represent 613 games played in the course of the year. The teams are divided into 12 con-
ferences of 8-12 teams each and, generally, games are more frequent between members of
the same conference than between teams of different conferences. The natural community
structure in the network makes it a commonly used benchmark for community-detecting
algorithm testing [7, 12].

This network is quite dense because the average degree of every node is more than
10. Using our algorithm with γ = 1.1 eleven communities are detected with Q = 0.5932
(Figure 3). All of them correspond almost exactly to the original conferences except 9
nodes. Three nodes including 60, 64, 98 are classified in the other two groups for their
weak link with their original group. Node 111 is classified into an inconsistent group for
its more links with current group than its original one just as the papers [7, 31, 25] have
obtained. Because there are few edges among all five members of the 12th conference,
these five nodes are distributed to other groups due to their more links with those groups.
It is very interesting that our algorithm can correctly classify node 59 into its original
group although many papers [7, 31, 25] have mislaid it. The community structure found
by our model seems to suggest a more precise organization than original conferences.

5 Discussion and conclusion
In this paper we propose a random iterative algorithm for community detection in

complex networks. At the beginning of the algorithm we randomly create a population
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Figure 3: The community structure of football network obtained by our method.

with Np individuals whose elements are the community identifiers of the nodes in the net-
work considered. During each iteration nr nodes are randomly selected to be reassigned
identifiers according to the interesting SP profile, the MID measure and the modularity
Q for all individuals except the first one. In the end, a proper community structure can
be detected by the identifiers encoded in the first individual because it has the largest
modularity.

The number of the individuals in the population is directly affecting the performance
of the algorithm. However increasing the size may take a little more time to execute the
algorithm and it does not yield better results after some point. Here an appropriate value
Np = 50 is used which takes into account these two factors.

The value of nr is related to the speed of the algorithm. Larger nr can make the
algorithm faster, but, on the other hand, it is easily subject to a local minimum. After a
lot of trial nr = [n/8] is adopted for our experiments and satisfactory results are obtained.

The parameter γ is an tuning factor of the mean MID measure around a selected node
to determine which neighbors need to be reassigned the identifiers. Just like the discussion
in the experiment 4.1, adjusting the value of γ in a proper range can sometimes provide
multiresolution community structure for us.

The algorithm finishes the search process of finding the best community structure if
there is almost no change in the Q value between 80 iterations. In fact, the algorithm is
always able to end in 200 iterations in our experiments.

Although the population creation in our algorithm is similar to that in the genetic
algorithm [26], the procedure of our method differs from the latter greatly. Namely, our
algorithm doesn’t need any operation like crossover, mutation or clean-up, thus there are
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not so many parameters to be determined here, this increases its feasibility in practical
use. We hope that this new method will be a helpful complementarity in the detection of
communities in complex networks with practical significance, and we expect that it will
be employed with promising results in this field.
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