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Abstract In this paper, we study how the parameters decide the coupling effect between two neu-
ron cells. The neuronal network is described by the systems of equations. Then the fast inhibitory
models of two neurons are explored. We find three important sections of the initial values, namely
inhibitory section, synchronization section, not synchronization section. These results are helpful
for studying multi-neurons models.
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1 Introduction
The dynamics of neuron cells can be studied by using mathematical models [1]. There

are three kinds of neuron cells in the neuron network. They are the excitable, the fast inhi-
bition, and the slow inhibition ones, respectively. The dynamics of the cells are described
with the following model equations
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where 1 ≤ k ≤ Ne, 1 ≤ j ≤ N f , 1 ≤ l ≤ Nσ ; k, j, l ∈ N, the nature number set. I stands
for the positive input to the k-th neuron cell, such as electric signal, ρis Gaussian noise,
His the Heaviside step function,
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H (x) =
{

0,x < 0
1,x ≥ 0

ε is a positive small number. ϕ , ge,g f ,gσ ,kσ are positive constants, being the same
order withε . vk,wk are the state variables of the k-th excitable neuron cell, x jdescribes the
state of the j-th fast inhibition cell, andsldescribes the state of the l-th slow inhibition cell,
yl controls the slow inhibition action to take place as yl > θeσ . The thresholds parameters
θα ,α ∈ {ee,e f , f e,eσ ,σe} andvexc,vinhare constants. Their values are displaced as in
Fig.2. The detail biological meanings of the parameters can be found in [1]. Many authors
studied the solutions of equation (1) to understand the behaviors of neuron nets [2∼6].

The dynamics of an isolated excitable neuron cell ekis described by equations

v′k = f (vk,wk)+ I
w′

k = εg(vk,wk)
(2)

In the v−wphase plane, thev-zero nullclining curve C ≡ {(v,w) : f (v,w)+ I = 0}is
cubic-like and fw < 0 , typically, as f (v,w) = −w− v3 + kv+ c = 0. The curve C has
one minimum point (vLk,wLk) with fvv(vLk,wLk)> 0 (left knee) and one maximum point
(right knee) which separate the curve into the left branch, the middle segment, and the
right branch. The w-zero nullclining curve D ≡ {(v,w) : g(v,w) = 0}is monotonously
increasing andgw < 0, typically, asg(v,w) = −w+ tanh(v) = 0. It is easy to see[7] that
equation (2) has unique stable equilibrium point as curves C and D intersect at the left
branch, a limit cycle surrounding the intersect point proved that the intersect point is
located at the middle segment of curve C. In the last case, the cell is called in firing and
the limit position of the limit cycle, asε → 0, is called the singular periodic orbit. (see
Fig.1).

The real orbit of equation (2) is closely near the singular one for smallε > 0. The
procedures of jump-up and jump-down are fast. The evolution of the cell state along the
left branch and the right branch take a long time period.

In the neuron net an excitable neuron cell may receive more than one kind of infer-
ence from the other cells such as excitement, fast inhibition, and slow inhibition. These
inferences are described by the added terms in the right side of first equation of equations
(1), respectively. When input Iis small the configuration of curves Cand D is as the first
case and the cell stays at the stable equilibrium state. When input I is large enough or
cell receives excitements the curve C will be lifted up and the equilibrium point locates at
middle segment, the cell firing. When cell receives inhibitions the curve C will be shifted
down and the left knee will get down too, jump-up will be delayed. If the inhibition term
is large enough the equilibrium point will return the left branch again and cell stays at rest.
In a big network, the excitable neuron cell ekmay connect to the cell excitable e j through
the two chains ek = e1 → e2 → ⋅⋅⋅ → eM = e jand ek = ê1 → ê2 → ⋅⋅⋅ → êN → f → e j,
where ei, êl , i(l)= 1,2,. . . M (N) are excitable cells, f is fast inhibition cell. The problem is
weather or not e j fires when cell ekis firing. The goal of this paper is to study the effects
of the fast inhibition and the excitement on an excitable neuron cell.
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Figure 1: Nullclines for a single oscillator. A singular periodic orbit shown by arrow
curves

2 The Main Results
It is clear that ekwill excitese jif M ≤ N because the excitement route is shorter than

the inhibition one. For the case M = N+1, the problem can be reduced to the connection
case ek → e j; ek → f → e j since the equations for e1 ⋅ ⋅ ⋅eM−1; ê1 ⋅ ⋅ ⋅ êNare the same form
and we can takeeM−1, êNasek. The equations of the reduced net is
⎧
⎨
⎩

εV̇1 = f (v1,w1)+ I = F1(v1,w1),
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εV̇2 = f (v2,w2)−ge (v2 − vexc)H(v1 −θee)−g f (v2 − vinh)H
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x−θ f e

)
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H
(
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)
− x
)

(3)
where the time scale has been changed into τ = εt. If the left knee of nullcling curve C2 =
{(v,w);F2(v,w) = 0}is lower than that ofC1 = {(v,w);F1(v,w) = 0}thene2is inhibited.
Theorem 1 Let F1(vLk,wLk) = 0. If ge(vLk − vexc)+g f (vLk − vinh)> 0 then the left knee
of C2 = {(v,w);F2(v,w) = 0} is lower than(vLk,wLk).
Proof Consider the curveC̃2 = {(v,w);F2(v,w,ge,g f ) + I = 0}. It is the graph of the
implicit functionw =W (v,ge,g f )defined by equationF2 + I = 0 since ∂F2/∂w = fw < 0.
Forge = g f = 0 , at the left knee(vLk,wLk)there hold Wv = 0,Wvv > 0 The Jacobian of
functionsF2(v,w,ge,g f )+ I and F2v(v,w,ge,g f )is

A =

〈
fv (v,w)−ge −g f ,
fvv (v,w) ,

fw (v,w) ,
fvw (v,w) ,

−(v− vexc),
−1

−(v− vinh)
−1

〉

At the point (vLk,wLk,0,0)there holdF2 + I = 0,F2v = 0, fv(vLk,wLk) = 0, and A =〈
fv(vLk,wLk), fw,−(vLk − vexc),−(vLk − vinh)
fvv, fvw, −1, −1

〉
being of rank 2. Therefore, the coordi-
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nates of the left knee can be defined as the functions of v2 = v(ge,g f ),w2 =w(ge,g f )having
the derivatives
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Thus, if(vLk − vexc)ge +(vLk − vinh)g f > 0thenw2ge,g f < wLk. This implies that the
left knee of curve C̃2 = {(v,w);F2(v,w,ge,g f )+ I = 0}

(v2 = v(ge,g f ),w2 = w(ge,g f ))

is lower than(vLk,wLk). Since I is positive and fw < 0 the left knee of C2 = {(v,w);F2(v,w)=
0}is lower than (v2 = v(ge,g f ),w2 = w(ge,g f )).
Theorem 2 A sufficient condition to assume that the inhibition action e1 → f → e2 hap-
pens before excitement action e1 → e2is 1

ϕ ln 1
1−θ f e

<
∫ θee

θe f

dv1
F1(v1,wLk)

.

Proof Consider equation (2) and the Fig.2. The singular orbit fore1is sketched. In the
procedure of e1jumping up, at the moment of τ0,v1(τ0) = θe f ,x(τ0) = x0. At the time
momentτ1 > τ0,v1(τ1) = θeethe excitement action takes place, at time moment τ2, x(τ2) =
θ f ethe inhibition action takes place,

The time for celle1to evolve fromv1 = vLkto v1 = θe f is∆τ0 =
∫ θe f

vLk
εdv

F1(v,wLk)
, from θe f toθee

∆τ1 = τ1 − τ0 =
∫ θee

θe f

εdv
F1(v,wLk)

(4)

Whilexchanging fromx0toθ f e,v1 ≥ θe f ,H(v1 −θe f ) = 1steadily, by the equation on x,

1− x0

1−θ f e
= exp[ ϕ

ε (τ2 − τ0)] (5)

From (5) we get∆τ2 = τ2 − τ0 = ε
ϕ ln 1−x0

1−θ f e
≤ ε

ϕ ln 1
1−θ f e

. Comparing (4) and (5), a
sufficient condition for that the inhibition action takes place earlier than the excitement
action does is

1
ϕ

ln
1

1−θ f e
≤
∫ θee

θe f

dv
F1(v,wLk)

Remark The condition can be satisfied by takingϕ large enough, actually, this means that
x changes rapidly.
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Figure 2: The orbit of (3) on slow time scale τ = εt
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