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Abstract Many real-world networks have a common feature of organization, i.e., community
structure. Detecting this structure is fundamental for uncovering the links between the structure and
the function in complex networks and for practical applications in many disciplines such as biology
and sociology. In this paper we propose a weighted parsimony criterion for community detection in
complex networks. This criterion relates communities with cliques (or complete subgraphs). Parsi-
mony here means that as minimal as possible number of inserted and deleted edges is needed when
we make the network considered become a disjoint union of cliques. A weight based on the topo-
logical features of the network is introduced to ensure the obtained subgraphs to be communities
by balancing the inserted and deleted edges. Tests on real networks give excellent results.
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1 Introduction
Research on complex networks has attracted a great deal of attention in recent years,

one main reason is that many real-world systems can be represented by networks com-
posed of vertices and edges [1, 2, 3]. Among others, some typical examples are the
Internet [4], social networks [5, 6], biological networks [7, 8] as well as the food webs
[9]. Many such networks are characterized by a mesoscopic level of organization, with
groups of nodes forming tightly connected units, called communities or modules, that are
only weakly linked to each other [10, 11, 12, 13, 14]. Community detection and network
partition are fundamental for uncovering the links between the structure and the function
in complex networks and for practical applications in many disciplines such as biology
and sociology.

A large number of papers related to community detection have emerged in recent
years. By and large, such papers can be classified into two categories: the one is fo-
cusing on the partition criteria function (quality index of partition) design, the other puts
interest in presenting algorithms that describe the dynamical process or a procedure re-
sulting the network community structure. For the first class research, one can use dif-
ferent methodologies and algorithms to realize the partition criteria, while for the second

∗This work is partially supported by the National Natural Science Foundation of China under grant
No.60873205, Innovation Project of Chinese Academy of Sciences, kjcsyw-s7.

†Corresponding author. zjh@amt.ac.cn

The Third International Symposium on Optimization and Systems Biology (OSB’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 419–429



class research one does not care too much for the potential corresponding criteria of the
studied algorithms. Quality functions, such as modularity defined by Newman and Gir-
van [11], modularity density [15], entropy function form [16], and Potts model related
methods [17, 18, 19], belong to the first category. Other approaches include clique per-
colation [20, 21], spectral [13], a continuous mapping to a conic optimization problem
[22], and maximum likelihood [23]. Ref. [24] defines a measure of robustness of com-
munity structure based on random perturbations. While the paper [10], as well as the
recent publications [25, 26, 27, 28, 29, 30], are related to detection algorithms. Plenty of
methods regarding community detection and network partition in complex networks have
been recently reviewed in [31, 32].

In this paper we propose a weighted parsimony criterion for community detection
in complex networks. This criterion relates communities with cliques (or complete sub-
graphs). Parsimony here means that as minimal as possible number of inserted and deleted
edges is needed when we make the network considered become a disjoint union of cliques.
A weight based on the topological features of the network is introduced to ensure the ob-
tained subgraphs to be communities by balancing the inserted and deleted edges. Tests on
real networks give excellent results.

2 Community detection as a constrained optimization prob-
lem

2.1 Parsimony criterion for community detection
The first criterion for community identification was given by M.Grötschel and Y.Waka-

byashi [33, 34] (GW). A summary statement of the GW criterion is presented in [25]:
“Identifying a community structure in a network is nothing but inserting and deleting

edges in a somehow most parsimonious way so that the network becomes a target network,
i.e., a disjoint union of complete subgraphs (or cliques)”.

Here we give a closed mathematical formula for GW criterion. Let A = (ai j) be an
n×n symmetric adjacency matrix of a network N(V ;E), where V = {v1,v2, ⋅ ⋅ ⋅ ,vn},E =
{(vi,v j) : ai j = 1}. By defining B as a s× s matrix with all elements equal to 1, B repre-
sents a complete subnetwork with dimension s(s=

√
∣B∣). For an n-nodes network, a can-

didate target network is a set of non-overlapping complete subnetworks B1, ⋅ ⋅ ⋅Bk,
√

∣B1∣+
⋅ ⋅ ⋅+

√
∣Bk∣ = n. With these notations, the parsimony criterion can be described by the

following optimization model:

min
k

min
∑k

i=1

√
∣Bi∣=n

{
k

∑
i=1

(∣Bi∣− ∣ABi ∣−
√
∣Bi∣)+(∣A∣−

k

∑
i=1

∣ABi ∣)}

=min
k
{∣A∣−n+ min

∑k
i=1

√
∣Bi∣=n

k

∑
i=1

∣Bi∣−2
k

∑
i=1

∣ABi ∣},
(1)

where ABi is a sub-matrix of A with elements corresponding to Bi. Equivalently, we
optimize:

P : min
k

min
∑k

i=1

√
∣Bi∣=n

{
k

∑
i=1

∣Bi∣−2
k

∑
i=1

∣ABi ∣}. (2)
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Figure 1: The community structure of the karate club network obtained by the parsimony model
PM.

Formally we write the parsimony model as

PM : min
k

P̄(k) = min
k

min
∑k

i=1

√
∣Bi∣=n

P(B1, ⋅ ⋅ ⋅ ,Bk), (3)

and the sub-optimization problem as

P̄ :minP(B1, ⋅ ⋅ ⋅ ,Bk),

s.t.
k

∑
i=1

√
∣Bi∣= n,

P(B1, ⋅ ⋅ ⋅ ,Bk) =
k

∑
i=1

∣Bi∣−2
k

∑
i=1

∣ABi ∣.

(4)

2.2 Some problems
When we apply the above parsimony model to some real-world networks, unexpected

results are encountered. The algorithm for partitioning the network we use is the sim-
ulated annealing algorithm for module identification [35], a widely used algorithm for
community detection in complex networks.

The first network we investigate is the famous karate club network analyzed by Zachary
[36], which is widely used as a test example for methods of detecting communities in com-
plex networks [10, 12, 37]. The network consists of 34 members of a karate club as nodes
and 78 edges representing friendship between members of the club which was observed
over a period of two years. Due to a disagreement between the club’s administrator and
the club’s instructor, the club split into two smaller ones.

However, 18 groups are obtained by using the parsimonious model (3) and (4) (Figure
1), in which several groups consist of only one node. Obviously it is not proper for us to
take a single node as a community.

Similar result is obtained for another widely used network, the scientific collaboration
network [10, 38]. Now we get 64 groups for the 200-node network.

Remarks. When the network is sparse, that is, it is far from a clique, the result is usually
unsatisfactory. In this case many such groups that only contain one or two nodes are
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detected, because the less the nodes in a group, the less the edges are needed to add into
the group to make it a clique. In view of the complexity of networks, maybe it is proper to
use a weight to balance the inserted term ∑k

i=1(∣Bi∣− ∣ABi ∣−
√
∣Bi∣) and the deleted term

(∣A∣−∑k
i=1 ∣ABi ∣) of the parsimony model (1).

3 A weighted parsimony criterion for community detec-
tion

3.1 The weighted model
Now we consider the weighted parsimony model as follows:

min
k

min
∑k
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√
∣Bi∣=n
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k
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√
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(5)

where 0 < w < 1 is a weight coefficient.
Equivalently, we optimize:

WP : min
k

min
∑k

i=1

√
∣Bi∣=n

{w ⋅
k

∑
i=1

∣Bi∣−
k

∑
i=1
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Formally we write the weighted parsimony model as

WPM : min
k

WP(k) = min
k

min
∑k

i=1

√
∣Bi∣=n

WP(B1, ⋅ ⋅ ⋅ ,Bk), (7)

and the sub-optimization problem as

WP :minWP(B1, ⋅ ⋅ ⋅ ,Bk),

s.t.
k

∑
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√
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k
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k

∑
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(8)

3.2 Selection of the weight coefficient
The main role of the weight w is to balance the inserted and deleted edges for get-

ting disjoint cliques from the network. From (5) we know that smaller w means larger
punishment for deleted edges, and larger w means larger punishment for inserted edges.
If the network is sparse, large size cliques hardly exist. So if we want to detect certain
communities a smaller w is needed. On the contrary, if the network is dense, a larger w is
proper. That is to say, the first factor we should consider is that we select the weight w to
be proportional to the average degree of the network. Speaking in details, for a network
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with n nodes, suppose its overall number of edges is M. Set De = M/n, which can further
be normalized to De = 1−1/De, that is 0 ≤ De < 1. We mean that the weight w ∝ De.

On the other hand, clustering coefficient is another important topological feature of a
network. For the network with n nodes, the local clustering coefficient for an individual
node i with di neighbors and Ki edges between its neighbors is Ci = 2Ki/(di(di − 1)).
We know that 0 ≤ Ci ≤ 1. It is equal to 1 for a node at the center of a fully interlinked
cluster, and 0 for a node that is part of a loosely connected group (star-like subgraph).
Define C as the average of Ci over all i: C = (1/n)∑n

i=1 Ci, which is called the average
clustering coefficient of the network, and it is thought as a measure of the network’s
potential modularity [39, 40]. Here the second factor we consider for the selection of w is
that it must be proportional to C, i.e., w ∝ C (0 ≤C ≤ 1).

Summarize the above considerations, we take the following form for the weight w

w =
1
2
(De)

2 ⋅C, (9)

if De ≥ 0.5 and C ≥ 0.5. When De < 0.5 or C < 0.5, which means that the network
is comparatively sparser, now to detect certain communities the weight w needs to be
properly adjusted to be more smaller. In these cases we take

w =
1
2
(De)

1/De ⋅C (10)

or
w =

1
2
(De)

2 ⋅C0.5/C, (11)

respectively.

4 Experiments
To examine the usefulness of our weighted parsimony model (WPM) (5)–(8) with the

weight (9), (10) or (11) for community detection, several real-world networks are investi-
gated. As in Subsection 2.2, the simulated annealing algorithm for module identification
is used [35].

4.1 The karate club network
Here the karate club network is again investigated for illustrating the effectiveness

of the WPM. This network has De = 0.5641 and C = 0.5706. Unlike the partition in
Subsection 2.2 where too many small size groups are obtained (Figure 1), now we get
three groups with 5, 12 and 17 nodes, respectively (Figure 2). Dashed curve with label
1 in Figure 2 represents the actual division of original club. Our result is very close to it
except node 10. Actually, this node is equally linked with the two parts of the original
division. This may lead to the computational difference. As a matter of fact, several
overlapping community detection algorithms detect it shared between the two parts [41,
42, 43]. Moreover, WPM can detect another small community composed of nodes 5, 6,
7, 11, 17 which only connect with node 1 in the original club. All these indicate that
the application of our weighted model WPM to the empirically observed network can not
only uncover its real situation, but also detect more complex substructure.
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1 2

Figure 2: The community structure of the karate club network obtained by the weighted
parsimony model WPM, three groups with three different colors.

Figure 3: The community structure of scientific collaboration network obtained by the
weighted parsimony model WPM.

4.2 The scientific collaboration network
The scientific collaboration network collected by Girvan and Newman [10] is another

widely used test example for methods of detecting communities in complex networks
[10, 38]. This network consists of 118 nodes (scientists) and 200 edges. It is a sparse
network with De = 0.4100 and C = 0.6119. It has higher average clustering coefficient C
than the karate club network because it has more small size cliques.

With the weighted parsimony model WPM (5)–(8) and the weight (10) we can get
9 groups. Figure 3 shows the detected community structure which is visually very rea-
sonable. This also indicates the advantage of the weighted model WPM to the original
parsimony model where 64 groups are obtained for this scientific collaboration network
(Subsection 2.2).

424 The 3rd International Symposium on Optimization and Systems Biology



111

83
81

43
37

59

64

60

98

91

Figure 4: The community structure of football network obtained by the weighted parsi-
mony model WPM.

4.3 The football team network
The third real network we have tested is the college football network of the United

States, which represents the game schedule of the 2000 season of Division I of the US
college football league. The nodes in the network represent the 115 teams, while the links
represent 613 games played in the course of the year. The teams are divided into 12 con-
ferences of 8-12 teams each and, generally, games are more frequent between members of
the same conference than between teams of different conferences. The natural community
structure in the network makes it a commonly used benchmark for community-detecting
algorithm testing [10, 38].

For this network De = 0.8124, which means it is a very dense network (the average de-
gree of every node is 2De = 10.6609). But it has comparatively smaller average clustering
coefficient C = 0.4032 because for such a network it must need more edges to form large
size (for example, 10 or 11) cliques. Using our weighted parsimony model WPM (5)–(8)
with the weight (11) eleven communities are detected (Figure 4). All of them correspond
almost exactly to the original conferences except 10 nodes. Three nodes including 60,
64, 98 are classified in the other two groups for their weak link with their original group.
Nodes 59 and 111 are respectively classified into inconsistent groups for their more links
with current groups than their original ones just as the papers [10, 15, 30] have obtained.
Because there are few edges among all five members of the 12th conference, these five
nodes are distributed to other groups because they have more links with those groups. The
community structure found by our model seems to suggest a more precise organization
than original conferences.

4.4 The journal index network
The journal index network constructed by Rosvall and Bergstrom [45] consists of 40

journals as nodes from four different fields: physics, chemistry, biology and ecology, and
189 links connecting nodes if at least one article from one journal cites an article in the
other journal during 2004. 10 journals with the highest impact factor in the four different
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Figure 5: The community structure of journal index network obtained by the weighted
parsimony model WPM.

fields were selected.
This is a dense network with De = 0.7884, at the same time it has high clustering

coefficient C = 0.7103. This means on average the nodes in this network have large de-
grees and there are several cliques within it. The exception exists for node 38 (the journal
Conservation Biology) whose degree is only 1 (Figure 5). The orange dashed curves in
Figure 5 indicate the original four fields. With our model we can detect essentially the
same communities as the actual partition, only with the singly connected node 38 split off
as another one. Nevertheless, any postprocessing can easily put this node into its original
community.

4.5 The dolphin network
The dolphin social network reported by Lusseau et al. [44] and recently studied by

Rosvall and Bergstrom [45] is also used here. This network consists of 62 nodes and 159
edges. The dashed curve in Figure 6 displays the division along which the actual dolphin
groups were observed to split [44].

This network is also a little dense (De = 0.6101), but it has very low average clustering
coefficient (C = 0.2590). Using our model two groups are obtained. From Figure 6 we see
that the partition is almost completely consistent with the actual division except the node
40, which is equally linked to the two parts. In fact, the recent overlapping community
detection algorithm detects it shared between the two groups [43]. Moreover, reminded
of the results in [45], where the authors illustrated the partitions of the same dolphin
network using four methods, i.e., their cluster-based compression, the edge-betweenness
algorithm [10], the spectral analysis approximation [13], and maximizing the modularity
Q [11]. Each of them split the network into two parts. The first two methods get the
same result as ours, but the third mislaid three nodes, and the fourth (i.e., maximizing Q)
mislaid eight nodes.
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Figure 6: The community structure of dolphin network obtained by the weighted parsi-
mony model WPM.

5 Discussion and conclusion
In this paper we propose a weighted parsimony criterion for community detection in

complex networks. The main idea is that the community structure as the dense modules
can be thought as isolated cliques by deleting and(/or) inserting minimal outer and(/or)
inner connections. A positive parameter w as a weight coefficient is introduced to balance
the inserted and deleted edges to get more reasonable community structure. The selection
of w depends only on the topological structure of the network itself, i.e., the average
degree De as well as the average clustering coefficient C. We use the weighted parsimony
model to a series of real-world networks and satisfactory results are obtained. As a matter
of fact, these networks belong to a wide category: some are with high De and high C (the
karate club network and the journal index network), some are with high De and low C (the
football team network and the dolphin network), and some are with low De and high C
(the scientific collaboration network). This indicates that the weighted model can detect
reasonable communities for a large kind of real-world networks.

Nevertheless, we couldn’t find the real-world network with low De and low C, i.e.,
0 < De < 0.5 and 0 < C < 0.5, so we have no opportunity to evaluate the validity of the
model for such network. The heuristic idea is that even in this situation the weight w is
not appropriate to be too small to detect suitable communities. Perhaps (10) and (11) can
be used for De ≤ C < 0.5 and C ≤ De < 0.5, respectively. Specially, the network with
De ≤ 0 or C = 0 is rare in the real world, and the weighted parsimony model for this kind
of network needs further study.
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