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Abstract A cell consists of many interacting biomolecular components that form some basic feed-
back loops, such as positive or negative feedback loops. When biological signals transduce through
cascades consisting of various loops they will be affected or even distorted. Especially, how to
process various signals buried in various intrinsic and extrinsic noises is an important issue. In this
paper, a method on how to cope with these signals will be discussed. A parameter to measure the
response time of the signal transduction i.e., τ0.9, and its relationship between the response time and
noise filtering will be discussed. Generally speaking, the longer the response time is, the better the
ability to filter noises will be. Then we discuss how to enhance the ability to filter noises in a pos-
itive or negative feedback loops, and draw a conclusion that coupling feedback loops can enhance
the ability.
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1 Introduction
Cells are autonomous entities. Whether to function as single-celled organisms or

as a part of higher multicellular organisms, cells must sense their environment and must
be able to react to it. Many cellular processes respond abruptly to internal and external
variations by using networks of interacting molecules. Over the past decades, the study
of detailed models for intracellular networks has become popular. Covalent modification
cycles are one of the major intracellular signaling mechanisms both in prokaryotic and
eukaryotic organisms [1]. A network can be decomposed into multiple subsystems or
modules and subsequently analyzed, therefore a modularity approach has been proposed
as a promising rationale for the analysis of large biochemical networks [2, 3].

There exists a basic substrate protein that can be in one of two states: active, e.g.,
phosphorylated, or inactive, e.g., dephosphorylated, in a signaling cycle, a ubiquitous
building block [1]. A kinase catalyzes the substrate protein to make it active, and another
enzyme catalyzes the active protein to make it inactive. The concentration of kinase can
be regarded as input signal and the concentration of activated protein can be regarded as
output signal. The signal can propagate by the cycle that can be frequently organized into
cascades in which the activated protein can be considered as a kinase in the next cycle.
Four operating regimes, i.e., hyperbolic, signaling-transducing, threshold-hyperbolic, and
ultrasensitive steady-state responses have been studied by the total quasi-steady approx-
imation method [1]. It has been shown that different feedback loops have different roles
in filtering noises [4, 5].
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In the four regimes discussed in [1], It has been shown that hyperbolic regime is
robust to extrinsic fluctuation but generates significant intrinsic noises and loses more
information. The ultrasensitive cycles are sensitive to extrinsic kinase and phosphatase
fluctuations [6]. However, why different regimes have different roles in dealing with
noises is still unknown and need to be discussed further. This paper is organized as fol-
lows. In section 2, we will give an introduction to the positive cycle and its functions, and
then analyze its response time τ0.9 [4] with the signal amplification. Owing to all kinds
of stochastic factors, the noises will be brought about and will affect the transduction of
signals. How to filter noises and improve the noise filtering ability will be discussed in
section 2. Finally, section 3 concludes the paper.

2 Methods and Results
2.1 Signal cycle

In a signal cycle, there exists a substrate protein, which can be either active or
inactive [1]. The substrate can be turned from its initial inactivate state I to an active state
A by the catalyst E1, while another catalyst E2 turns it in the opposite direction, where E1
and E2 are two kinds of enzymes. The substrate toggles between the two states when the
enzymes E1 and E2 play a role. The transition between the two states I and A catalyzed
by the kinase E1 and phosphatase E2 forms a cycle. If the enzyme E1 is regarded as an
input signal and A is regarded as an output signal, a signal can be propagated through this
cycle.

In order to explore the mechanisms of the signal propagation, it is important to study
the relationship between the output, i.e., A(t) and the parameters, e.g., E1. A dynamical
system of differential equations can be be deduced according to the biochemical reactions
and the mass action law, but it is difficult to analyze its dynamics theoretically because
of its nonlinearity. It is fortunate that the system can be reduced according to the total
quasi-steady-state approximation (tQSSA), and the simplified equation takes the form [1]

dA(t)
dt

= k1
E1(S−A(t))

K1 +E1 +S−A(t)
− k2

E2A(t)
K2 +E2 +A(t)

. (1)

Here E1 can be used to stand for the input signal and A for the output signal. The meanings
of other parameters can be seen in [1]. When a signal is put into the cycle, it is changed
by the module and finally the module puts out a signal as a response to the input signal,
so the information is processed by the cycle. The signal cycle consists of the output A
and input E1 and our attention will be focused on the steady-state response and transient
dynamics of (1). It can exhibit four regimes which cover all the situations of steady state
response, i.e., hyperbolic, signal-transducing, threshold-hyperbolic, and ultrasensitive.

To explore the function of the cycle, it is important to consider the dynamics of A over
time t. As seen in Fig.1, for different parameter values, the speed of convergence is very
different. In other words, in the signal-transducing case, the speed is the fastest, while in
the hyperbolic case, it is the slowest. Note that the initial value of A for all the cases is the
zero concentration.
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Figure 1: A comparison of the convergence speed for the four operating regimes.

2.2 Response time of signal cycle
It has been known that a response time affects the noises in a signal [4, 7]. The

response time is regarded as a transient characteristics of output signal. In order to study
the characteristics of the cycle, it is necessary to study both the transient characteristics
and the steady state properties in detail as much as possible [8, 9]. Saez-Rodriguez [10]
proposed a parameter τ0.9 to measure how fast a system responds to the input roughly
and it can be regarded as a response time approximately. The parameter τ0.9 is defined
as the time at which 90 percent of the maximal output signal is reached. The response
time τ0.9 as a function of the input signal E1 for the four operating regimes is shown in
Fig.2. The hyperbolic is the slowest and the signal-transducing is the fastest. The response
time of the four regimes increases from hyperbolic, ultrasensitive, threshold-hyperbolic,
to signal-transducing in turn.

2.3 Noise filtering
There exist noises in nature everywhere and they affect a wide range of biochem-

ical reactions. The signal will be affected by the noises inevitably when it propagates
through a cycle. There are many kinds of causes that can induce noises in the transduc-
tion of the signal in the cycle. It is well known that random thermal motion originates
the fluctuation, which is very common in intracellular signal transduction [11]. It is well
known that the causes of the noises mainly come from external and internal perturbations,
but we only consider the external noises here. Given any input S without any noise, the
system will converge to a steady state in the four operating regimes respectively. When
there exists a noise in the input signal, the output will be affected in the transduction.

412 The 3rd International Symposium on Optimization and Systems Biology



0 50 100 150
0

50

100

150

200

250

300

350

400

450

E1

τ 0.
9

 

 
Hyperbolic
Signal−transduing
Threshold−hyperbolic
Ultrasensitive

Figure 2: The response time τ0.9 as a function of the input signal E1 for the four operating
regimes.

When a noisy signal is propagated through the cycle, it is distorted so that we can’t
get the ideal output signal under the influence of the external noise. Our major task is
to filter the noise so as to control the output and make it satisfy certain conditions. A
fact has been depicted previously that low-frequency inputs are proxies for longer input
activations, whereas high-frequency inputs are proxies for short, transient activations of
the cycle and for high-frequency noises [4]. On the one hand, if the frequency of inputs
is very low and the response time of the reaction is very short, the noises contained in the
signal can be easily filtered out. On the other hand, if the frequency of the input is very
high and the response time of the signal is very high, the noises in the cycle is difficult to
filtered out relatively, the ability to filter the noise is related to the frequency of the input
and the response time of the cycle. Generally speaking, the frequency of an input can be
regarded as a fixed number, so the ability to filter noises can be deduced from the response
time of a cycle. The longer the response time is, the better the ability to filter noise will
be.

If the response time τ0.9 of one cycle is longer than another, the longer should have the
better ability to filter noises than the shorter. In order to measure this ability we introduce
the noise amplification η which was defined as [5]

η =
std(X)/ < X >

std(S)/ < S >
, (2)

where std(S) and std(X) are standard deviation of the input S and output signal X , re-
spectively. < S > and < X > are the mean of the input and output signal, respectively.
If τ0.9 of some cycle is very long, the η should be small in general. By comparing the
length of response time τ0.9 in the four operating regimes, we found that the response time
τ0.9 in the signal-transducing regime is the shortest whereas the hyperbolic is the longest,
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as shown in Fig.2. The noise amplification η as a function of E1 for the four operating
regimes is shown in Fig.3. It can be seen that the noise amplification η of the signal-
transducing is the biggest while the hyperbolic is the smallest among the four regimes.
In other words, the longer the response time τ0.9 is, the smaller the noise amplification η
will be. Therefore, the signal cycle with larger response time will have a better ability to
filter noises.

However, there exists an exception in an interval from about 20 to 60. In this re-
gion, the response time τ0.9 of threshold-hyperbolic is longer than that of the ultrasen-
sitive while the noise amplification η of ultrasensitive is bigger than that of threshold-
hyperbolic. However, in other case, the noise amplification and response time have the
similar order for both hyperbolic and signal-transducing regimes. Such a phenomenon is
related to the gain and will be discussed in future.
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Figure 3: Noises amplification η as a function of E1 for the four operating regimes.

2.4 How to improve the filtering ability
The interactions of numerous intercellular biomolecules can induce complex cel-

lular behaviors. These biomolecules interact with each other and form various modules or
motifs. One basic module is made up of a positive and a negative feedback loops [9]. In
this section, the relationship between the response time and the amplification of a signal
will be discussed and some ways to improve the filtering ability will be proposed by the
comparison of some basic positive or negative feedback loops about their response time
and their noise amplification.

Assume that a positive feedback loop consists of two nodes, X and Y . They activate
each other and form a basic motif. The system can be described as

dX
dt

= VX (Y/KY X )
H/(1+(Y/KY X )

H)+S−KdX X(t)+KbX , (3)

dY
dt

= VY (X/KXY )
H/(1+(X/KXY )

H)−KdYY (t)+KbY , (4)
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where the parameters VX and VY indicate the the regulatory effect of X and Y , respectively,
H indicates the Hill coefficient, the threshold parameter KY X denotes the threshold of Y
inducing a significant response of X , the threshold parameter KXY denotes the threshold
of X inducing a significant response of Y , KdX and KdY represent the degradation rate
constants of X and Y , respectively, KbX and KbY indicate the basal synthesis rates of X
and Y , respectively, and S can be regarded as the input signal of the cycle. This loop is
denoted as P for the sake of convenience.

Similarly, if X activates Y and Y represses X , they compose a negative feedback loop
and it’s described as the following equations

dX
dt

= VX/(1+(Y/KY X )
H)+S−KdX X +KbX , (5)

dY
dt

= VY (X/KXY )
H/(1+(X/KXY )

H)−KdYY +KbY . (6)

We denote this loop as N.
Let S in loops P and N be input signal and there exist noises in the signal. The node

X or Y can be regarded as its output. The ability to filter the noises can be measured by
the noises amplification and response time. The response time and noise amplification are
shown in Fig.4. On the one hand, the response time of a positive loop P is shorter than
that of a negative loop N when the input S varies in a certain interval. On the other hand,
the noise amplification of the positive loop is higher than that of the negative loop when
the input signal varies in the same interval, which means that the positive loop has a better
ability to filter noises in the transduction of the signal than that of the negative loop.

Now we consider how to improve the ability to filter noises. We first consider a
positive loop P coupled with a negative loop, which is denoted as PN for the sake of
convenience, where X and Y compose a positive loop P and Y and Z form a negative loop
N. P and N form a motif PN1. The equations can be described as

dX
dt

=
VX (Y/KY X )

H

1+(Y/KY X )H −KdX X +KbX +S, (7)

dY
dt

=
VY (X/KXY )

H

1+(X/KXY )H +(Z/KZY )H −KdYY +KbY , (8)

dZ
dt

=
VZ(Y/KY Z)

H

1+(Y/KY Z)H −KdZZ +KbZ . (9)

Let’s consider the variation trend of response time and corresponding noise amplification.
It can be easily found that the response time will increase for the coupled motif PN1. The
noise amplification of PN1 is higher than that of P, therefore increasing response time
will enhance the ability to filter noise.

We next consider a positive loop coupled with a positive loop. We denote it as PP1
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and its equations can be described as

dX
dt

= VX (Y/KY X )
H/(1+(Y/KY X )

H)+S−KdX X +KbX , (10)

dY
dt

= VY ((X/KXY )
H +(Z/KZY )

H/(1+(X/KXY )
H +(Z/KZY )

H)−KdYY +KbY ,(11)

dZ
dt

= VZ(Y/KY Z)
H/(1+(Y/KY Z)

H)−KdZZ +KbZ , (12)

where VX = 2; VY = 2; VZ = 5; KY X = 1; KXY = 2; KY Z = 3; KdX = 1; KZY = 1; KdZ = 1;
KbX = 2; KdY = 1; KbZ = 1; KbY = 1. S is an input signal with some noises.

The response time of the coupled loop PP is longer than that of P while the noise
amplification of PP is smaller than that of P. The longer the response time is, the smaller
the noise amplification is. Therefore, the response time of such a coupled positive loop in-
creases and its noise amplification decreases. In other words, the ability to filter noises can
be enhanced when one positive loop couples another positive loop, as shown in Figs.4A
and 4B.
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Figure 4: Response times and the noise amplification for different kinds of coupling.

Finally, we consider another type of coupling in which such a positive loop couples
anther positive loop or negative loop. At first, the positive loop couples anther positive
loop in which Y and Z repress each other. We denote it as PP2. Secondly, the positive
loop couples a negative loop in which Y represses Z while Z activates Y . We denote it as
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PN2. The equations describing these tow coupled motifs can be found in Appendix. We
simulate such two cases about the response time and the noise amplification (see Figs.4C
and 4D). The response time of PP2 and PN2 are shorter than that of the positive loop P
when S varies in a interval while the noise amplification of PP2 and PN2 is higher than
that of P. Therefore the ability to filter noises of such a positive loop can be reduced if it
couples a positive loop or a negative loop and form the coupled loops PP2 and PN2.

From the analysis above a conclusion can be drawn that if a positive feedback loop
couples a positive loop or a negative loop and form a cycle that is the same as PP1 or
PN1, the ability to filter noises of the signal positive loop can be enhanced. If a signal
feedback loop couples a positive loop or a negative loop and form a cycle that is the same
as PP2 or PN2, the ability to filter noises of the signal positive loop can be deduced.

3 Conclusion and Discussion
In this paper, we mainly discuss the effects of coupled positive or negative feed-

back on the ability to filter noises. We found that different kinds of feedback have different
roles in filtering ability will be. In the first place, a relationship between response time
and noise amplification was discussed. It was found that the longer the response time is,
the less the noise amplification is and the better the ability to filter noises will be. Using
this result, we discuss how to couple a new loop so as to enhance the ability to filter noises
by lengthening the response time. We found that different feedback loops have different
roles in filtering noises.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Youth

Research Grant 10701052) and the Innovation Fund of Shanghai University.

References
[1] Gomez-Uribe, C., Verghese, G. C., Mirny L. A.: Operating regimes of signaling cycles:

statics, dynamics, and noise filtering. PLoS Comput Biol 2007, 3(12):e246.
[2] R. Wang, L. Chen, and K. Aihara, Construction of genetic oscillators withe interlocked feed-

back networks, J. Theor. Biol. 242(2006) 454
[3] R. Wang, L. Chen, and K. Aihara, Detection of cellular rhythms and global stability within

interlocked feedback systems, Mathematical Bioscience 209 (2007), 171-189.
[4] Shibata, T. and Fujimoto, K. (2005). Noisy signal amplification in ultrasensitive signal trans-

duction. Proc. Natl. Acad. Sci., 102, 331-336.
[5] G. Hornung, N. Barkai, Noise propagation and signaling sensitivity in biological networks: a

role for positive feedback, PLoS Comput. Biol. 4 (1) (2008) e8.
[6] Angeli, D., Ferrell, J., Sontag, E., (2004). Detection of multistability, bifurcations, and hys-

teresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101,
1822-1827.

[7] Shibata, T. and Ueda, M. (2008). Noise generation amplification and propagation signaling in
chemotactic systems of living cells. BioSystems, 93, 126-132.

[8] Bennett, M. R., Volfson, D., Tsimring, L., and Jeff Hasty, J. (2007). Transient dynamics of
genetic regulatory networks. Biophys. J.,92, 3501-3512.

Response Time and Its Role in Noise Filtering 417



[9] Kim, J. R., Yoon, Y., and Cho, K. H. (2008). Coupled feedback loops form dynamic motifsof
cellular networks. Biophys. J., 94, 359-365.

[10] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock, and E. D. Gilles. Modular
analysis of signal transduction networks. IEEE Contr. Syst. Mag., 24(4):35-52, 2004.

[11] Yanagida T, Ueda M, Murata T, Esaki S, Ishii Y (2007). Brownian motion, fluctuation and
life. Biosystems. 88, 228-242.

Appendix 1
The values of its parameters are VX = 2;VY = 2;VZ = 5;KY X = 1;KXY = 2;KY Z =

3;KdX = 1;KZY = 1;KdZ = 1;KbX = 2;KdY = 1;KbZ = 1;KbY = 1;

Appendix 2

⎧
⎨
⎩

dX
dt =VX (Y/KY X )

H/(1+(Y/KY X )
H)+S−KdX X +KbX

dY
dt =VY ((X/KXY )

H +(Z/KZY )
H)/(1+(X/KXY )

H +(Z/KZY )
H)−KdYY +KbY

dZ
dt =VZ(Y/KY Z)

H/(1+(Y/KY Z)
H)−KdZZ +KbZ

(13)
The values of its parameters are VX = 2;VY = 2;VZ = 5;KY X = 1;KXY = 2;KY Z =

3;KdX = 1;KZY = 1;KdZ = 1;KbX = 2;KdY = 1;KbZ = 1;KbY = 1;

Appendix 3

⎧
⎨
⎩

dX
dt =VX (Y/KY X )

H/(1+(Y/KY X )
H)+S−KdX X +KbX

dY
dt =VY ((X/KXY )

H)/(1+(X/KXY )
H +(Z/KZY )

H)−KdYY +KbY
dZ
dt =VZ/(1+(Y/KY Z)

H)−KdZZ +KbZ

(14)

The values of its parameters are VX = 2;VY = 2;VZ = 5;KY X = 1;KXY = 2;KY Z =
3;KdX = 1;KZY = 1;KdZ = 1;KbX = 2;KdY = 1;KbZ = 1;KbY = 1;

418 The 3rd International Symposium on Optimization and Systems Biology


