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Abstract A supervised learning framework based on information and combinatorial theories is
introduced for the inference and analysis of genetic regulatory networks. First, an associativity
measure is proposed to quantify the regulatory strength. Next, a phase-shift metric is defined for
detecting regulatory orientations among network components. Thus, this framework can solve undi-
rected problems from most current linear/nonlinear relevance methods. For computational redun-
dancy, the size of the classified pair candidates is constrained within a multiobjective combinato-
rial optimization problem. In comparison with previously reported methods, our flexible approach
can be used to efficiently identify a directed biological network that is verified by both synthetic
and real-world microarray datasets having different statistical characteristics. Thus, the underlying
network-designing mechanisms are deciphered by qualitative and quantitative means.

Keywords Information theory; Signal processing; Combinatorial optimization; Genetic regula-
tory network

1 Introduction
The phenotypes and functions of cells within multicellular organisms are directly re-

lated to the genetic contents decoded from DNA and RNA during the transcriptional and
translational processes. Inference of gene regulatory networks or maps for these intracel-
lular processes would provide a better understanding of the underlying genetic regulatory
mechanisms. Thus, reconstructing regulatory networks from multisource data measured
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during different cell phases and in different cell types and even species has become one
of the most interesting research topics in recent times.

Since simultaneous measurement of multiple expression profiles with increasing ac-
curacy and reasonable costs is possible by using high-throughput microarrays and ChIP
assays, learning and inference of regulatory maps and the functionality of these genetic
networks is possible and necessary. During the last few decades, manifold inference and
learning methods have been proposed that integrate raw data with computational model-
ing. These include Boolean network (probabilistic or dynamic) methods [1-3], system-
atic differential/difference equations [4-6], information theory-based modeling [7-9], and
graph and control theoretic approaches [1, 10, 11].

Regulatory networks that are currently available are commonly regarded as static de-
scriptions of inherent mechanisms. Once the models and parameters are set, the regu-
latory processes can be determined. During transcriptional and translational processes,
real-world regulatory maps may undergo various perturbations from intercellular and in-
tracellular signals and unknown factors. Therefore, a single model may not be sufficient
for characterizing all the possible structures or even the crucial ones for specific analysis
purposes. Consequently, more flexible and reasonable models are necessary to improve
the present rigid network-inference methods.

In this study, we propose an integrative supervised learning framework based on in-
formation and combinatorial theories for inference of regulatory mechanisms. First, we
provide brief definitions of correlation and mutual information. We then propose an asso-
ciative quantity for the dependency measures. Using integrative operations on all pairwise
genes from the raw dataset, one may rank the dependency/connectivity among pairwise
gene candidates. Based on the signal processing theory [12-14], a phase-shift metric is
then introduced for measuring the delay of expression among pairwise candidates. The
underlying computational redundancies are reduced by a multiobjective combinatorial
optimization (MOCO) approach.

The paper is organized as follows. Section 2 describes the methods used for building
the framework. Section 3 presents the application of the proposed methods to network
inference problems by theoretical analysis and experimental validation. Finally, Section
4 concludes with remarks on the proposed methods and future directions for the recon-
struction of biological networks.

2 A Supervised Learning Framework for Inferring Ge-
netic Regulatory Networks-Methodologies

The supervised learning framework mainly integrates two aspects, i.e., it defines pair-
wise regulatory strengths and constrains subsequent computational redundancy. This sec-
tion introduces a dimensionless metric for regulatory strengths and a phase-shift metric
for determining regulatory orientations. For biological inference, we propose a MOCO
problem for constraining the inference complexities. The framework allows the possibili-
ties of incorporating acquired knowledge and specific analysis for integrative data mining.
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2.1 Probability Theory-based Inference of Biological Network Struc-
tures

Correlation analysis aims to reveal the strength of a linear relationship between ran-
dom variables (R.V.); statistical correlation (coefficient) represents the departure of two
R.V. from independence. Among the various metrics often used to measure the correla-
tion or association, the Pearson product-moment correlation coefficient is applicable to
some data of diverse characteristics. Normally, the correlation ρX ,Y is denoted as the co-
variance of two R.V. divided by the product of their standard deviations, which can be
represented as [15]

ρX ,Y = cov(X ,Y )
σX σY

= E((X−µX )(Y−µY ))
σX σY

= E(XY )−E(X)E(Y )√
E(X2)−E2(Y )

√
E(Y 2)−E2(Y )

(1)

where cov indicates covariance, E is the expected value operator, µX = E(X), and σ2
X =

E[(X −E(X))2]=E(X2)−E2(X).
When interpreting the Pearson product-moment correlation coefficient, Cohen noted

that the proposed interpretative criteria were arbitrary in general and that specific treat-
ments should be adopted for specific cases in fields ranging from physics to social sciences
[16]. Apart from the parametric statistic, nonparametric correlation metrics such as the χ2

test, Spearman’s ρ , and Kendall’s τ are proposed, and these can be applied to problems
with diverse nonnormal distributions [17].

2.2 Information-Theoretic Inference of Biological Network Structures
To quantify the mutual dependence of two R.V., mutual information is frequently

adopted as an alternative in information theoretic application, in addition to the above
measure. The mutual information of two discrete R.V. can be defined as [18]

I(X ;Y ) = ∑
y∈Y

∑
x∈X

p(x,y)log
(

p(x,y)
p1(x)p2(y)

)
(2)

where p(x, y) denotes the joint probability distribution of X and Y , and p1(x) and p2(y)
represents the marginal probability distributions of X and Y , respectively. The measure
normally adopts the well-defined form I(X , Y ,b) where b denotes the base. In general,
a base of 2 can be specified since that is the common unit of the bit. Thus, for analysis
within this context, we consistently use the base of 2.

2.3 Associativity Measure for Describing Regulatory Connectivities
The above-described measures illustrate the correlation and dependence relationships

of R.V. Normally, these R.V. characterize different entities within a system structure. The
interconnections in the biological network can be weighted by the probability of associa-
tion between the pairs being investigated [19]. Since the above metrics, i.e., the Pearson
product-moment correlation coefficient and mutual information are dimensionless vector
quantities, we introduce an associativity measure (AM) for illuminating the connectivities
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between candidate pairs. Within this uniform measure, the quantities of mutual informa-
tion and correlation metrics can be projected onto the orthogonal coordinates of a 2D
plane. The metric is represented in formal terms as

AMi = wi1
−→
MIi +wi2

−−→
Cori = [wi1MIi]+ j[wi2Cori] = ∣AMi∣∠αi

=
√
[wi1MIi]2 +[wi2Cori]2∠tan−1

(
wi2Cori
wi1MIi

)
, i ∈ N

(3)

where MIi and Cori denote the mutual information and correlation quantities, respec-
tively; ω i1 and ω i2 represent the weights of both quantities; α i is the phase difference for
the ith pair candidate; and N is a set of natural numbers. Note that the weights here aim to
leverage any possible asymmetric distribution within the datasets of the above subterms
MIiand Cori. The weights can be derived from previously acquired knowledge or from a
specific theoretical hypothesis, e.g., the respective centroids of datasets.

2.4 Phase-Shift Metric for Determining Regulatory Directions
Currently, most gene expression profiles are discrete time-series data. The data sam-

ples are diverse expression densities measured at multiple time points, and the data in-
tervals represent the sampling periods. When n samples are compared, a total of n(n-
1)/2 pairwise comparisons are obtained. Butte et al. utilized a type of signal processing
method to cluster and compare the similarity of expression profiles ..[12]. For every po-
tential pairwise regulation, the activities of the investigated genes can be modularized as
a subsystem. Their expression patterns might be viewed as input and output signals, as
shown in Fig. 1.

Figure 1: Each pairwise association might be modularized as a subsystem with the ex-
pression patterns serving as input and output signals.

For each pair, the coherence, gain, and phase shift might be calculated by discrete
Fourier transform (DFT) of the inputs and outputs. The coherence of signals a and b is a
function of the power spectral density (PSD) and the cross power spectral density (CPSD)
and is defined as

Cohab( f ) =
∣CPSDab( f )∣2

PSDaa( f ) ⋅PSDbb( f )
(4)

where PSDaa( f ), PSDbb( f ), and CPSDab( f ) measure the PSD and CPSD of the associ-
ated pairwise signals. The symbol f represents a frequency-domain metric. Normally,
signals a and b are of the same length. A coherence of 1 represents a scalar multiples
relationship between two investigated signals, while 0 indicates that such a relationship
is not linearly related. The transfer function (TF) between two associated input/output
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signals measures the signal amplification and related time lag/latency properties, which
are defined as

T Fab( f ) =
PSDab( f )
PSDaa( f )

(5)

The regular transfer functions will be of the complex-valued form, the arctangents of
which are the corresponding transfer phases (TP). The absolute values denote the related
transfer gains (TG) and are represented as

T Pab( f ) = arctan[
PSDab( f )
PSDaa( f )

] (6)

T Gab( f ) = abs[
PSDab( f )
PSDaa( f )

] (7)

Theoretically, the TP illustrates the phase shift between the investigated pairwise sig-
nals, i.e., the input and output. The phase shift ranges might be allocated within -π to π ,
where -π represents a phase lead of half a wavelength and π denotes a phase lag of half a
wavelength. Whether the input signals are amplified or not is not illuminated at the out-
put by the transfer gain and determines the related degrees at different frequencies. The
larger the ratio, the less energy is lost by the output. Note that at different frequencies,
the transfer phase and relative transfer gain may also differ from each other. An effective
evaluation criterion for these metrics is the related coherence, i.e., at frequencies where
the coherence values are high, the corresponding transfer phases and gains are much more
reliable than others.

The advantages of such metrics lie in the flexible and quantitative characteristics of
determining the regulatory delay via dynamic thresholding. Factual regulatory mecha-
nisms have multiple possibilities, and inherent regulatory delay effects might vary dur-
ing biological processes. The phase-shift metric determines such possibilities underlying
regulatory mechanisms in a quantitative manner. The advantages include the inherent
capabilities of integrating a priori biological knowledge. This kind of knowledge-based
inference method avoids redundant false-positive connectivities within pair candidates.

Such dynamic thresholding is applicable to the majority of problems facing theoretical
and experimental biologists. Since regulatory connectivities underlying pair candidates
may differ from each other in various processes or at different sampling times, system-
atic and quantitative determination of these regulations with empirical and theoretical
knowledge will be much more effective than the information generated by most currently
available computational approaches [6-8]. Such types of flexible network connectivities
and regulations characterize major genetic regulatory processes from the perspective of
information and combinatorial theories.

2.5 A MOCO Framework for Constraining Computational Complex-
ities

In the following sections, we extract inherent regulations and decipher network struc-
tures by introducing a pairwise gene hierarchy criterion (PGHC) for classifying possible
gene pairs into three major groups as follows.
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(1) Authentic Pairwise Genes (APGs): These include pairs with mutual information val-
ues and correlation coefficients larger than specific thresholds. Moreover, the correspond-
ing P value resides in the confidence interval, i.e., it is smaller than 0.05.
(2) Questionable Pairwise Genes (QPGs): These include pairs that do not satisfy both of
the thresholds mentioned above. The group contains pairs of two classes. One class has
pairs with mutual information larger than specific thresholds but satisfies neither the crite-
ria of correlation coefficients nor P values. The other class includes pairs with correlation
coefficients larger than specific thresholds and with Pvalues residing in the confidence
interval but the related mutual information does not satisfy specific thresholds.
(3) Unauthentic Pairwise Genes (UPGs): These include those pair candidates that do not
satisfy any criteria of the APGs or QPGs defined above.

The QPGs actually act as a subsidiary candidate pool for the APGs in case the empir-
ical thresholds are set too high to extract structures merely from the APGs. Under such
conditions, the QPGs will be ranked according to mutual information values, correlation
coefficients, and P values. Optimal pairs will then be recruited to the APGs to refine the
former network connectivities. The algorithm for the supervised PGHC is shown below.

Thus, network reconstruction might be transformed into a class of MOCO problems
[20-22]. The optimization objectives include first reaching suitable thresholds for mutual
information and correlation coefficient to maximize the feasible components in the APGs.
The inference might be carried out with much more confidence and reliability. The sec-
ond objective is to maximize the UPGs. The larger the UPGs, the fewer the problems
faced during further solution searching. This decreases the feasible solution space for
subsequent computations. In addition, the following relative constraints exist. There are
nonnegative constraints for the sizes of groups, and the total number of pair candidates is
fixed, i.e., the valid combinatorial space is limited. The gain thresholds for guaranteeing
valid network connectivities and previously acquired biochemical knowledge and differ-
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ent experimental conditions constitute other prominent constraints for the reconstruction
process. The MOCO paradigm is described as follows

OBJ : Fi = maxi∈S1{APGsi, UPGsi}

s.t. 1. APGsi ≥ 0, QPGsi ≥ 0, UPGsi ≥ 0, i ∈ S1;
2. ∑(APGsi +QPGsi +UPGsi) ∈ S2;
3. {GCi} ⊂ S3;
4. {ABKi} ⊂ S4.

(8)

where Fiis the multiobjective function set; S1 is the set of feasible group combinations for
APGs, QPGs, and UPGs; S2 is the number set of all gene pairs (S2= {n(n- 1)/2}, n is the
total number of genes); S3 is the set of necessary gain constraints (GC); and S4 is the set
of possible constraints from acquired biological knowledge (ABK).

Recently quite a few authors have argued the necessity of incorporating the prefer-
ences of decision-maker (DM) into MOCO solution selection .[21, 22]. For the problem
under investigation, the DM’s preferences mainly stem from the GC (S3) and ABK (S4)
illustrated above.

Figure 2: Schematic representation of the MOCO problem by dynamic thresholding of
mutual information and correlation metrics. Total pairs are classified into APGs, QPGs,
and UPGs. The upper rightward horizontal arrow represents dynamic thresholding by
mutual information, and the left descending arrow is for thresholding of the correlation
measure.

In cases governed by lower thresholds of mutual information and correlation metrics,
APGs will form the group with the maximum components within the total pair candidates.
On the other hand, with the heightened thresholds, many more pairs might be grouped
into UPGs. This reduces the computational complexity for network reconstruction since
APGs have fewer components in such situations. If APGs are classified with above-
normal sizes, the reconstructed network will be densely connected and will have much
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more redundancies. On the contrary, a sparsely connected structure will be inferred with
an undersized candidate group of APGs.

Since biological theoreticians and experimentalists may vary specific mutual infor-
mation and correlation thresholds to incorporate empirical or concrete knowledge into the
reconstruction procedures, the underlying coordination approaches via the MOCO frame-
work might be feasible and significant, especially for those containing pivotal structural
connectivities or for specific analysis purposes.

The APGs, QPGs, and UPGs engender the underlying evolutionary mechanisms with
respect to dynamic thresholding by the above metrics and related biochemical knowledge,
as shown in Fig. 2.

3 Experiments and Analysis of a Synthetic Dataset from
a Typical Mammalian G1/S Cell Cycle Transition Net-
work

We validated the proposed methods using three types of datasets. The first is syn-
thesized from a cell cycle network by Swat et al. [10, 23], while the other datasets of
different statistical properties are collected from the literature. For simplicity, we use the
methods illustrated above to describe the essential procedures for analyzing the synthetic
dataset, determining pairwise regulatory information, and modeling regulatory networks.
Two other datasets are provided in the supplementary file.

Figure 3: The expression profile of nine genes in the cell cycle transition network. The
horizontal coordinate represents sampling time, and the vertical indicates expression con-
centrations.

The G1/S transition network consists of nine components, i.e., pRB (retinoblastoma,
a tumor suppressor in the pocket protein family), E2F1 (a transcription factor that tar-
gets genes that regulate the cell cycle), CycDi(the inactive form of the cyclin D/cdk4, 6
complex), CycDa(the active form of the cyclin D/cdk4, 6 complex), AP-1 (a family of
transcription factors that mediate mitogenic signals), pRBp(the phosphorylated form of
pRB), pRBpp (the double-phosphorylated form of pRB), CycEi (the inactive form of the
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cyclin E/cdk2 complex), and CycEa (the active form of the complex cyclin E/cdk2). The
dataset is sampled every 60 s and covers 12 sampling points within a time range of 11
min. The time course is shown in Fig. 3, and the nine genes/proteins are listed in the
legend. We next calculate the mutual information, correlation coefficients, and P values
of pairwise genes for constructing the hypothetical cell cycle regulatory network (shown
in the supplementary figures).

Through dynamic thresholding of mutual information and correlation coefficient, one
may conveniently obtain the global statistical distribution for groups of different sizes
using these metrics. Fig. 4 shows the classified groups.

Figure 4: Global statistics for pair candidates via dynamic thresholding of mutual infor-
mation and correlation coefficient. The P value adopts 0.05. In total, 36 pairs are obtained
from nine genes/proteins. The horizontal axis represents different mutual information
thresholds, while the vertical axis shows the correlation coefficient.

From the global statistics shown above, we may compare different combinatorial op-
timizations for the groups. For the APGs, we find that the optimal combination for the
mutual information and correlation coefficient thresholds is below 0.75 when the size of
the APGs is approximately more than 12 (brown zone on the left plot). As shown in the
middle one, the QPGs mainly range from 10 to 20. For the UPGs, if the mutual informa-
tion threshold is below 0.4, the size of the UPGs will be as small as zero or so under any
correlation coefficient threshold. However, if the mutual information threshold is above
0.7, the size of the UPGs will increase up to 20 or even 30. Thus, one may conclude the
sizes of APGs and UPGs are less sensitive to correlation coefficient thresholds than to
mutual information thresholds when the mutual information thresholds operate below 0.3
or above 0.75.

Such information acts as a guide for further supervised inference. First, we set the
centroids, i.e., 0.6620 and 0.5957, as the thresholds for mutual information and correlation
coefficient, respectively; the increment is 0.05 for both metric values. Next, we determine
that the classified APGs are undersized for the reconstruction; therefore, we decrease the
thresholds with the given increment.

After several iterative operations and using the inherent biological knowledge, we
obtain the relevant APGs, QPGs, and UPGs. The corresponding thresholds for mutual
information and correlation coefficient decrease to 0.52 and 0.55, respectively. Supple-
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mentary Tables 1 and 2 list the details of APGs and QPGs, and the related gene/protein
names are shown in Fig. 8. There are 14 candidate pairs in the APGs, 15 in the QPGs,
and only 7 in the UPGs.

Once the basic groups are determined, the regulatory direction should be the upper-
most issue to challenge further analysis and validation. To determine the systematic phase
shifts and time lags for deciding the regulatory orientation, we utilize the signal processing
concepts defined above. Without the loss of generality, we consider the pair E2F1-pRBp
that has been randomly selected from the APGs. First, we calculate coherence, transfer
gain, and phase shift via the 6-point DFT on the related expression profiles. Next, we
derive related coherence, transfer gain, and phase-shift metrics at four frequencies, i.e. 0,
0.0028, 0.0056, and 0.0083 Hz.

Figure 5: The expression profile of the E2F1-pRBp pair and the related coherence, trans-
fer gain, and phase-shift graphs. The sampling frequency for the profile signals is 1/60
Hz. The metric values are estimated at four frequencies using the 6-point DFT.

On the two lower subgraphs in Fig. 5, each phase shift corresponds to a specific
transfer gain at the related frequencies. For instance, the phase shift is 2.7496 rads at
0.0056 Hz, and its related transfer gain is 0.3011. If we set 0.3 as the gain threshold,
we may acquire two valid phase-shift values at frequencies of 0.0056 Hz and 0.0083
Hz since there are only two gain values at frequencies larger than the threshold. We
then average the two phase-shift values and denote the mean value as the corresponding
time lag for the underlying regulatory process. Finally, we may assign different signs to
each lag (averaged phase shift) derived above, i.e., positive (+) for leading phase shift,
undirected (0) for zero phase shift, and negative (-) for lagging phase shift. By means of
the systematic phase-shift measure, the regulatory directions might be directly elucidated
from the previously determined candidate groups.

Furthermore, from the descriptions given above, we observe that the different gain
thresholds play significant roles in determining global pairwise phase shifts and regulatory
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orientation. We might define the phase shifts among gene pairs as the functions of the gain
thresholds, which we might stipulate according to different experimental situations and
empirical knowledge, and then plot the global phase-shift distribution as shown in Fig. 6.

Figure 6: The global phase-shift statistical distribution (with totally14 pairs from the
APGs). The phase-shift statistics vary as functions of the gain thresholds. The blue
curve represents the integral tendency of pairs with leading phase shifts (positive), red
denotes those with lagging phase shifts (negative), and green is for those without any
detected phase shift (undirected), i.e., there might be no regulatory activities between
corresponding pairs (the same as in the following figures).

From the above-described phase-shift statistics distribution, when one enlarges the
gain threshold, the undirected gene pairs will also increase gradually, and the pairs with
leading and lagging phase shifts will decrease in jumps and rest at the extreme gain thresh-
old of approximately 2.4. Moreover, there will be no change if the gain is still enlarged.
The other extreme gain threshold is 0.1, shown in the statistics distribution illustrated
above. Through dynamic gain thresholding, one may easily determine concrete regulatory
time lags, directions, and intensities from the quantitative signal processing perspective.
See Fig. 7 for details on the APGs.

We observe certain interesting phenomena in Fig. 7. Pairs with both high mutual
information and correlation are not necessarily also candidates with strong connectivities
under relatively high gains. For example, in pairs 1 to 4 (between E2F1, CycDa, CycDa,
AP-1, and pRBp), the phase-shift information permanently changes from +1 to 0 once the
gain threshold increases to 0.4. These pairs might be classified as candidates with weak-
gain connectivities. In pairs 5 (CycDi, CycDa), 8 (CycEi, CycEa), 11 (pRB, CycDi), and
14 (pRBpp, CycEa), the delay information changes to zero around the gain of 1. In the
case of pairs 9 (pRBp, CycEa), 10 (CycDi, CycEa), 12 (AP-1, pRBp), and 13 (CycDa,
pRBp), the delay signs are maintained even when the threshold reaches values as high as
2 or so. We may call such candidate pairs as pairs with strong-gain connectivities.
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Figure 7: Phase-shift statistics for the APGs (a total of 14 pairwise genes are sorted in
a descending order based on mutual information values) calculated on the basis of the
signal-processing concepts defined above. The red area (+1) represents the leading phase
shift, black (-1) denotes the lagging phase shift, and white shows pairs without any phase
shift under specific gain thresholds.

We randomly preset the gain threshold at 0.5. This indicates that during the regulatory
process, there is only half transfer loss from each potential signal source to its anticipated
destination. Under this condition, E2F1 and pRBpp are isolated from the reconstructed
network under the current gain. The acquired knowledge from the literature requires all
nine genes to interact within the regulatory network. Thus, to include the two isolated
genes into the reconstructed network, we decrease the gain threshold slightly to 0.3. Fig.
8 shows the reconstructed network.

4 Results and Discussion
We propose an information and combinatorial theories-based learning framework for

inference and analysis of genetic networks from microarray datasets. Considering the ac-
quired knowledge, possible preferences of DMs, and practical computational constraints,
network inference might be transformed into a type of MOCO problem.

For different kinds of microarray datasets collected from multiple organisms and
species, there is still no efficient solution applicable to most problems facing biologi-
cal theoreticians and experimentalists. In comparison with currently available methods,
the associative approaches allow the possibilities of incorporating concrete theoretical
and empirical knowledge and thus construct regulatory networks with more reliability
and accuracy than ever. Moreover, different regulatory models should focus on specific
perspectives and utilities adopted by the builders; thus, inherent complexities from the
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Figure 8: The reconstructed genetic network with a gain threshold at 0.3. Each black-
circled node represents the relevant gene/protein, the red arrow denotes activation, while
the black tee indicates inhibitory action among bilateral entities. The blue labels along
the links describe the respective pairwise associativity measures (see supplementary Fig.
1-C for details).

inference procedures and the necessity to optimize the results appeal to such associative
relevance metrics and MOCO methods.

Including or excluding specific nodes from the reconstructed networks with sufficient
confidence, possible DMs’ preferences and previously acquired knowledge provides sev-
eral design approaches within the proposed framework. Through this study, we can deci-
pher the underlying designing mechanisms of pairwise connectivities by dynamic thresh-
olding of linear/nonlinear relevance metrics. We also determine regulatory orientations
among genetic networks with signal processing metrics. With the inference procedure
transposed into a MOCO problem, we might constrain the multiobjective iterative search-
ing complexities with reasonable considerations from acquired knowledge, experimental
conditions, and other computational limits or from the preferences of DMs.

Finally, we utilize the proposed methods to analyze a synthetic cell cycle dataset and
two other microarray datasets of different statistical characteristics. For the sake of sim-
plicity, we validate the approach on a few small-scale datasets. Different clustering and
classification methods are beneficial and necessary for preprocessing some large-scale
datasets, e.g., those with more than hundreds of gene/proteins. Thus, by qualitative and
quantitative means, we reveal the inherent designing mechanisms for genetic networks,
facilitating further theoretical analysis and experimental design of specific biochemical
purposes.

Availability
Supplementary material is available at http://sites.google.com/site/bhtangsite/.
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