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Abstract Identifying disease genes is very important not only for better understanding of gene
function and biological process but also for human medical improvement. Many previous methods
are based on modular nature of human genetic disease and the similarity between known disease
genes and candidate genes. In this paper, we propose the method of Modularized Random Walk
with Restart (MRWR) based on the functional module partition and module importance. Genes
are prioritized in each functional module and then the gene ranking in each module is fused into a
global ranking in the entire network. MRWR is applied to prostate cancer network. It is surprising
that twenty-eight out of top fifty ranking genes are confirmed by PDGB or KEGG or literatures.
MRWR significantly improves the performance of previous classical algorithms.

Keywords Candidate disease genes prioritization; Modularized random walk with restart; Func-
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1 Introduction
Connecting genotype with phenotype is a fundamental aim of the human genetic stud-

ies [1]. Linkage analysis can identify a genomic region which often contains up to hun-
dreds of genes but it is very difficult to exactly find the location of disease genes [2].

Since the Human Genomic Project started in 1990 [3], the molecular bases of 2514
phenotype descriptions have been clarified but still 1743 Mendelian phenotypes or loci
unknown [4]. Phenotypically similar diseases are often caused by functionally related
genes, being referred to as the modular nature of human genetic disease [5, 6]. So far,
most existing methods for candidate disease genes prioritization have been based on this
idea. Franke et al constructed a functional human gene network that integrated informa-
tion on genes and the functional relationships between them [7]. They used this network
to rank genes based on their functional interactions. ENDEAVOUR used similarity be-
tween disease genes and candidate genes to prioritize candidate genes [8]. Up to now
the method has integrated more than 10 types of genomic data. Recently a new method
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called CIPHER has integrated human protein -protein interactions (PPIs), disease pheno-
type similarities, and known gene-phenotype associations to uncover the relation between
phenotype and genotype [9]. Kohler et al used the global network distance measure, ran-
dom walk with restart (RWR) and diffusion kernel (DK), instead of simple direct neigh-
borhood and shortest path measure to prioritize candidate disease genes [10]. Human
disease genes were also predicted based on Human-Mouse conserved co-expression anal-
ysis and module-based interpretation of phenotypic effects [11].

Actually those known genes causing phenotypically similar diseases are not always
in the same functional module in the molecular network. When similarities between can-
didate disease genes and known disease genes are used to identify potential new disease
genes, some candidate genes which are relevant to certain disease may not get a high sim-
ilarity score when training genes are not in the same functional module with them. In fact
all the methods mentioned above will get a good performance unless candidate genes are
in the same module with all the training genes. Otherwise some casual genes may not be
identified because they are not located in the same functional module with all the training
genes. Hence it is very important to rank candidate genes using training genes located in
the same module with them. Based on this idea we propose the method of Modularized
Random Walk with Restart (MRWR) using the functional module partition and module
importance. Genes are prioritized in each functional module and then the gene ranking
in each module is fused into a global ranking in the entire network. MRWR is applied to
prostate cancer network. It is surprising that twenty-eight out of top fifty ranking genes
are confirmed by Prostate Gene DataBase (PDGB) [12] or Kyoto Encyclopedia of Genes
and Genomes (KEGG) [13] or literatures. MRWR significantly improves the performance
of previous classical algorithms.

2 Materials and Methods
2.1 Data

The prostate cancer network contains 233 genes and 1207 interactions [14]. This
gene-interaction network is extracted using automatic literature mining based on Sup-
port vector machine (SVM) and dependency parsing. Because another two disease genes
(ZFHX3 and HNF1B) have been added to Online Mendelian Inheritance in Man (OMIM)
[4] after the publication, these two new disease genes and those genes which interact with
new disease genes in Biological General Repository for Interaction Datasets (BioGRID)
[15] are included into our network. We also consider the interaction between added genes
and previous genes.

2.2 Approach
We choose those genes which are confirmed to be relevant to prostate cancer by

OMIM and also located in our network under investigation as training genes. The aim of
our algorithm is to obtain more genes associated with prostate cancer. So we seek to get
the ranking of non-training genes in each functional module and further give each gene
an overall ranking in the entire network to select the most probable disease gene. EN-
DEAVOUR, Diffusion Kernel (DK) and Random Walk with Restart (RWR) have shown
their effectiveness in previous research [8,10]. Here we put forward Modularized Random
Walk with Restart (MRWR) method for candidate disease genes prioritization.
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Firstly we use the module partition method based on maps of random walks [16]. It
is hard for most existing clustering algorithms to automatically determine the number of
modules in biological network. The particular advantage of this algorithm is to automat-
ically detect the number of modules in the process of simulated annealing. Moreover
the method has been successfully illustrated in scientific communication network and can
uncover the community structure in the complex network. There are two important rea-
sons for using this algorithm to implement functional modules partition. One is that the
coverage of the gene functional annotation is limit. It has been pointed out that only two
thirds of all the genes are annotated by at least one functional annotation [17]. Hence
using functional annotation to implement functional modules partition is unreasonable.
The other is that PPINs and social networks share scale-free and small-world properties
and methods used for both social and Web networks have been successfully used for bio-
logical networks, even directly for disease genes prioritization [17].

Then well-known Random Walk with Restart [10] is adopted to prioritize the genes in
each functional module. When implementing RWR in certain module k, we don’t select
all the known disease genes as training genes. Only disease genes in module k will be
used as training genes.

Thirdly modules are scored by the module importance measure. The concept of im-
portance here is used for the global prioritization. The high rank in the entire network
should be given to genes in the important module. We define the score of the module
as the product of the number of training genes and all genes in that module. Most peo-
ple think disease genes deploy their functions as part of sophisticated functional modules
[5,18]. Recent studies have also reported this type of module-based interpretation of phe-
notypic effects [19]. So we can conclude that disease genes will always appear near the
known disease genes and the module which has many known disease genes is likely to
have more unknown disease genes. On the other hand, the number of genes in the module
is obviously relevant to the importance of module.

Finally the global ranking of candidate genes will be obtained. A new algorithm is
proposed to fuse the ranking in every module into a global ranking in the entire network.
Algorithm is showed below.

Step 1: It is assumed that we want to get the top N ranking genes in the entire network.
M is denoted as the number of modules. We choose the top 1 ranking gene in the most
important module as the top 1 ranking gene in the entire network (i=1).

Step 2: We denote m(i,j) as the number of top i ranking genes (global rank) located in
the module j and s(j) as the score of the module j (j=1,2,···,M)

We calculate

e(i, j) = (i+1)
s( j)

M
∑

k=1
s(k)

−m(i, j)

and assume the module with the biggest e(i,j) as module p. We choose the gene which is
ranked m(i,p) +1 in the module p as the i+1 ranking gene in the entire network.

i=i+1
Step 3: If i is less than N, we return to step 2, otherwise we will end our algorithm.
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Figure 1: The number of genes confirmed by PGDB or KEGG or literatures in the top n
ranking

3 Results
After module partition, known disease genes from OMIM are indeed located in dif-

ferent modules. MRWR is evaluated by examining how many genes are confirmed by
PGDB or KEGG or literatures in the top n ranking. In large scale cross-validations, area
under the curve (AUC) is an important evaluation measure of gene prioritization methods.
Here we propose another measure, which is still the area under the curve. But the curve is
the top n curve (the curve describing the relation between n and the number of confirmed
genes in the top n ranking) not Receiver Operating Characteristic curve (ROC). The com-
parison between the result of our algorithms and previous algorithms is showed in Figure
1 [12,13,20-42]. All the genes inferred by our methods and previous classical method are
showed in Table 1. These Results (Figure 1 and Table 1) confirm the superiority of our
algorithms to previous classical algorithms.

Four out of top five ranking genes (AKT1, BRCA1, MYC and TP53) in the prioritiza-
tion of MRWR are confirmed by various evidences [12,13,20,22,29,33]. Among the top
ten ranking genes in the prioritization of MRWR, there are surprisingly eight true disease
genes. On the contrary, classical algorithms only can find at most four confirmed genes.
Twenty-eight out of top fifty ranking genes are confirmed by PGDB, KEGG or literatures
in the term of MRWR.
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Table 1: Genes inferred by various methods
Gene ENDEAVOUR DK MRWR RWR Evidence

AKT1 - - + + [12,20]
APC - - + + [12]
ATM + + - - [12,21]
BCL2 - - + - [12,13]

BRCA1 + + + + [12,22]
CCND1 - + + + [12,13]
CDK4 + - - - [23]

CDKN1B - - + - [12,13,24]
CDKN2A - + + - [12,25]

INS - - + - [13,26]
MAPK8 - - - + [12]
MAPK1 - - - + [27]

MAX + - - - [28]
MYC - + + + [12,29]

NCOA3 + - - - [12]
NR3C1 + - + - [30]
PDPK1 - + + - [13,31]

RB1 + - - - [12,13,32]
TNF - + + + [12]
TP53 + + - + [12,13,33]

VEGFA - - + - [12]
’+’ indicates that the given gene is ranked within the top 20 and ’-’ indicates that the

gene is not among the top 20 ranking genes inferred by the method.

MRWR is tested under different back probability values to show the robustness of
algorithm to the parameter values. The results of MRWR in 11 different test conditions
(MRWR with back probability 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) are
listed in Table 2. We observe that the performance of MRWR is robust to the back proba-
bility. The best performance may be obtained when back probability is 0.2.

4 Discussion and Conclusion
4.1 Discussion

The shortcoming of MRWR is that we can’t find disease genes from those modules
which don’t have any known disease gene. If we can obtain more training genes, the value
of our modularization algorithm will be further showed. The effectiveness of MRWR
strongly depends on the construction of disease-specific network. Sometimes modules in
complex network are overlapping [43]. A good overlapping clustering algorithm which
can automatically determine the number of clusters in the network will give a further
modification of our algorithm. If we can get the network integrating more data sources,
the result may be even better. Biological information can be converted to the weight of
vertices and edges in the network. A good module importance measurement may also
improve the results of our algorithm.
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Table 2: The number of confirmed genes in the top n ranking under different test condi-
tions

Back probability 10 20 30 40 50
0.01 8 14 17 21 22
0.01 8 14 20 25 27
0.05 8 14 20 24 27
0.1 8 13 20 25 28
0.2 8 13 20 24 29
0.3 8 13 19 25 28
0.4 8 13 19 24 22
0.5 8 12 19 24 28
0.6 8 11 20 23 27
0.7 8 12 19 23 27
0.8 9 12 19 23 27
0.9 9 13 20 24 28

4.2 Conclusion
The similarity measurement is used widely in the prioritization of candidate disease

genes. Satisfactory results can’t be obtained using traditional algorithms if known disease
genes are located in different modules. We propose the Modularization Random Walk
with Restart based on module partition, genes prioritization per module and rank fusion.

MRWR is applied to prostate cancer network. Twenty-eight out of top fifty rank-
ing genes are confirmed to be associated with prostate cancer by the PGDB or KEGG
or literatures. On the contrary, traditional gene prioritization methods respectively find
only 24, 19 and 12 correct genes. We conclude that similarity-based algorithm after be-
ing processed by modularization, gene prioritization per module and rank fusion can get
much better result than previous algorithm. Our algorithm is a framework which allows
integrating many previous similarity-based methods and can improve the results of them.
Our validation experiments also show that disease genes are indeed likely to be located in
different modules.
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